We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Serum Iron Levels Measured Using Mobile Phone

By LabMedica International staff writers
Posted on 12 Dec 2013
Print article
Iron in blood serum has been visually detected and quantified quickly by processing photographs, taken with a conventional digital camera or Smartphone, of an iron colorimetric sensory polymer substrate.

Routine blood analysis usually determines the amount of iron in blood serum using ultraviolet-visible spectroscopy and this method requires an iron-complexing reagent to form differentially colored compounds. These reagents include reductants, complexing agents, precipitating agents, and buffered solutions.

Biochemists at the University of Burgos (Spain) developed a technique consists in putting a drop of the fluid on the material, a thin disc half a centimeter in diameter and 0.1 mm thickness, waiting fifteen minutes and comparing the result with a standard. This can be done by sight alone, but if the film is photographed with a mobile phone, the concentration of this biologically and commercially very significant metal can be measured better.

The sensory materials were designed following a straightforward strategy. A proven iron organic chelator, called 8-hydroxyquinoline, was easily transformed into an acrylic monomer and further copolymerized with hydrophilic co-monomers to render a membrane comprised of a hydrophilic, gel-like polymer network. The film-like membrane generated was cut into small-diameter sensory discs. Thus, upon immersion of the sensory disks in blood serum, wine, and water, a color development was rapidly observed which could be easily correlated with the iron concentration of the samples. For verification, high-resolution electron-impact mass spectrometry (EI-HRMS) was carried out on a Micromass AutoSpec mass spectrometer (Waters Corporation; Milford, MA, USA) and other instruments.

Red, green, and blue (RGB) digital parameters obtained from photographs of the sensors were processed statistically using principal component analysis (PCA) and used to elaborate titration curves and quantify iron concentrations. Ferric ions in blood serum have been visually detected using only the naked eye by immersing a sensory disc into the sample for a few minutes. The iron concentrations detected are between 56 parts per billion (ppb) and 56 parts per million (ppm). The normal level in blood serum, obtained by centrifugation of the blood, is 0.8 to 1.8 ppm.

José Miguel García, PhD, the senior author of the study said, “It is a smart polymeric material which changes color based on the concentration of iron cations Fe2+ and Fe3+ in an aqueous medium. RGB [red, green, blue] information can be obtained directly from the phone and processed on a conventional computer to determine the levels of the cation according to the reference system.” The study was published on October 24, 2013, in the Journal of Materials Chemistry A.

Related Links:

University of Burgos
Waters Corporation


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.