We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Serum Iron Levels Measured Using Mobile Phone

By LabMedica International staff writers
Posted on 12 Dec 2013
Print article
Iron in blood serum has been visually detected and quantified quickly by processing photographs, taken with a conventional digital camera or Smartphone, of an iron colorimetric sensory polymer substrate.

Routine blood analysis usually determines the amount of iron in blood serum using ultraviolet-visible spectroscopy and this method requires an iron-complexing reagent to form differentially colored compounds. These reagents include reductants, complexing agents, precipitating agents, and buffered solutions.

Biochemists at the University of Burgos (Spain) developed a technique consists in putting a drop of the fluid on the material, a thin disc half a centimeter in diameter and 0.1 mm thickness, waiting fifteen minutes and comparing the result with a standard. This can be done by sight alone, but if the film is photographed with a mobile phone, the concentration of this biologically and commercially very significant metal can be measured better.

The sensory materials were designed following a straightforward strategy. A proven iron organic chelator, called 8-hydroxyquinoline, was easily transformed into an acrylic monomer and further copolymerized with hydrophilic co-monomers to render a membrane comprised of a hydrophilic, gel-like polymer network. The film-like membrane generated was cut into small-diameter sensory discs. Thus, upon immersion of the sensory disks in blood serum, wine, and water, a color development was rapidly observed which could be easily correlated with the iron concentration of the samples. For verification, high-resolution electron-impact mass spectrometry (EI-HRMS) was carried out on a Micromass AutoSpec mass spectrometer (Waters Corporation; Milford, MA, USA) and other instruments.

Red, green, and blue (RGB) digital parameters obtained from photographs of the sensors were processed statistically using principal component analysis (PCA) and used to elaborate titration curves and quantify iron concentrations. Ferric ions in blood serum have been visually detected using only the naked eye by immersing a sensory disc into the sample for a few minutes. The iron concentrations detected are between 56 parts per billion (ppb) and 56 parts per million (ppm). The normal level in blood serum, obtained by centrifugation of the blood, is 0.8 to 1.8 ppm.

José Miguel García, PhD, the senior author of the study said, “It is a smart polymeric material which changes color based on the concentration of iron cations Fe2+ and Fe3+ in an aqueous medium. RGB [red, green, blue] information can be obtained directly from the phone and processed on a conventional computer to determine the levels of the cation according to the reference system.” The study was published on October 24, 2013, in the Journal of Materials Chemistry A.

Related Links:

University of Burgos
Waters Corporation


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.