We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Volatile Breath Compounds Associated with Laryngeal Carcinomas

By LabMedica International staff writers
Posted on 06 May 2014
Print article
Image: Exhaling into a tedlar bag for volatile organic compound analysis (Photo courtesy of the Information and Scientific News Service (SINC).
Image: Exhaling into a tedlar bag for volatile organic compound analysis (Photo courtesy of the Information and Scientific News Service (SINC).
Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as noninvasive markers of head and neck epidermoid cancer.

The technique of solid phase microextraction (SPME) may be useful for the analysis of exhaled air and it is one of the methods used to concentrate volatile organic compounds emitted by different sources.

Scientists at the Rey Juan Carlos University (Madrid, Spain) and the Foundation Hospital (Alcorcón, Spain) compared the volatile substances exhaled by 11 people with cancer of larynx in various phases of the disease, with those of another 20 healthy people, half of whom were smokers. The participants exhaled breath into tedlar bags after fasting for at least eight hours so there was no leftover food or drink on their breath.

The samples were then analyzed with solid phase microextraction, gas chromatography and mass spectrometry equipment (Agilent [Varian inc.], Palo Alto, CA, USA) which enable very small amounts of a substance to be separated and identified. The concentrations are around or slightly above the equipment's detection limits, 40 ng/mL, which is equivalent to 40 ppb (parts per billion).

The investigators found that that the air exhaled by the more seriously ill patients, in a stage called T3, contains different concentrations of seven compounds compared with the levels of healthy people or even those with a less developed tumor (T1). Specifically, in the graphics of individuals with advanced cancer, the peaks that represent ethanol (C2H6O) and 2-butanone (C4H8O) are particularly significant. These two compounds therefore become potential markers of laryngeal carcinoma.

A total of 31 common VOCs in non-smokers have been determined, whereas smokers reach up to 45 VOCs, thus differentiating the two types of populations. The study also identified four markers in the exhaled breath that are typical of smokers, such as benzene and furfural. The four marker compounds that were found and related to cigarette smoking but absent in nonsmokers, and these were: cyclohexa-1,3,5-triene (benzene), fural-dehyde, 4-isobutyl-1-(1-hydroxyethyl)-benzene, and 2,3,5-trimethylhexane.

Rafael A.García, PhD, a professor of Chemical Engineering, and lead author of the study said, “At the moment it is still a preliminary study and a wider sample has to be obtained but it is a step in the right direction, an alternative with regard to identifying biomarkers, not only for this type of cancer but for other more prevalent and serious ones such as lung cancer, where early detection is key.” The study was published in the March 2014 issue of the journal Chromatographia.

Related Links:

Rey Juan Carlos University
Foundation Hospital
Agilent


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.