We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Micro-Method Determines Glutathione in Human Blood

By LabMedica International staff writers
Posted on 27 Aug 2014
Print article
Image: The Jasco UV/Vis 530 spectrophotometer (photo courtesy of Jasco Analytical Instruments).
Image: The Jasco UV/Vis 530 spectrophotometer (photo courtesy of Jasco Analytical Instruments).
Image: The Agilent 1100 high-performance liquid chromatography (Photo courtesy of Agilent Technologies).
Image: The Agilent 1100 high-performance liquid chromatography (Photo courtesy of Agilent Technologies).
A new colorimetric procedure has been described for the visible-range spectrophotometric analysis of glutathione (GSH) in microvolumes of blood collected by fingerstick and validated by reliable high-performance liquid chromatography.

GSH deficiency predisposes to oxidative damage which is thought to contribute to onset and progression of many disease states; while conversely, elevated GSH levels generally confer resistance to oxidative stress as observed in many types of cancer cells.

Clinical biochemists at the University of Siena (Italy) took both venipuncture sample and fingerstick blood samples from 23 healthy subjects, 14 females and 9 males, age range from 27 to 35 years. At screening, they all had normal physical examination and laboratory analyses including blood counts, lipid profile, comprehensive metabolic panel, uric acid, iron, urinalysis and urine electrolytes.

The analysis of GSH in blood collected by fingerstick after processing was measured in the clear supernatant by using a modification of a colorimetric method, using 5,5′-dithio-bis(2-nitrobenzoic acid) , which is also known as Ellman's reagent or DNTB. Reaction between GSH and DTNB was analyzed at 412 nm wavelength by a Jasco UV/Vis 530 spectrophotometer (Easton, MD, USA). Analysis of GSH by HPLC was performed by chromatographic separation performed on a Zorbax Eclipse XDB-C18 column (Agilent Technologies; Santa Clara, CA, USA) absorbance detection was carried out on an Agilent 1100 instrument equipped with a diode detector.

In a group of 23 healthy subjects the GSH content in blood was determined by the micro-method to be 8.54 ± 0.11 nmol/mg hemoglobin. Linear regression analysis of the GSH concentrations determined by parallel analysis of the same samples with the reference HPLC method showed a satisfactory correlation between the two methods. These data indicate that the main feature of the new micro-method is its excellent precision and accuracy for blood GSH.

The authors concluded that the new HPLC-validated procedures for the determination of GSH in micro volumes of blood, that are collected by fingerstick in humans, sample volumes as low as 0.5 μL are suitable for analysis. Being minimally invasive, the fingerstick method can be used to monitor frequently GSH concentrations while avoiding the discomfort and possible adverse events associated with phlebotomy. The procedure is suitable for minimally invasive investigation of oxidative stress in peripheral blood. The study was published on August 1, 2014, in the Journal of Chromatography B.

Related Links:

University of Siena
Jasco
Agilent Technologies


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.