We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Biosensor Selectively Measures Cancer Patient p53 Autoantibodies

By LabMedica International staff writers
Posted on 24 Jan 2017
Print article
Image: A micrograph showing cells with abnormal p53 expression (brown) in a brain tumor (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing cells with abnormal p53 expression (brown) in a brain tumor (Photo courtesy of Wikimedia Commons).
A team of Spanish cancer researchers has developed a disposable electrochemical biosensor for the specific and sensitive determination of p53-specific autoantibodies, which are biomarkers for certain types of cancers with p53 gene mutations.

The 10 to 40% of all cancer patients with aberrantly mutated p53 have cancer cells that multiply without control, and their immune systems generate autoantibodies against the p53 protein.

To more effectively determine levels of p53 autoantibodies, investigators at Universidad Complutense de Madrid developed a disposable electrochemical biosensor. This specific and sensitive biosensor was based on magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies. HaloTag is a modified bacterial enzyme designed to covalently bind to a synthetic ligand of choice and fuse to a protein of interest.

After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the electronic signal generated by the hydroquinone/H2O2 system was correlated to the levels of p53-autoantibodies in the sample.

The biosensor was used to analyze sera from 24 patients with high-risk of developing colorectal cancer and six from patients already diagnosed with colorectal (four) and ovarian (two) cancer. The biosensor was able to determine p53 autoantibodies with sensitivity higher than that of a commercial standard ELISA using a simpler protocol with less sample volume. The biosensor can be easily miniaturized and developed into a cost-effective diagnostic tool.

"Our immune system produces these cancer autoantibodies even three years before the first symptoms appear," said contributing author Dr. Susana Campuzano, associate researcher in analytical chemistry at Universidad Complutense de Madrid. "Its simplicity of handling, portability, and time to complete the full procedure make it suitable for application in clinical routine."

The biosensor was described in the November 26, 2016, online edition of the journal Analytical Chemistry.

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.