We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Plasma Markers Predict Brain Amyloid Burden in AD

By LabMedica International staff writers
Posted on 23 Feb 2018
Print article
Image: A Matrix-Assisted Laser Desorption/Ionization (MALDI) time-of-flight mass spectrometer (Photo courtesy of JEOL).
Image: A Matrix-Assisted Laser Desorption/Ionization (MALDI) time-of-flight mass spectrometer (Photo courtesy of JEOL).
Aggregation and accumulation of beta-amyloid (Aβ), particularly Aβ42, is implicated in the pathogenesis of Alzheimer's disease (AD) with overproduction in autosomal-dominant AD and impaired clearance in the presence of amyloidosis contributing to the cause of AD.

Cerebrospinal fluid analysis and other measurements of amyloidosis, such as amyloid-binding positron emission tomography studies, are limited by cost and availability. There is a need for a more practical beta-amyloid (Aβ) biomarker for central nervous system amyloid deposition.

An international team of scientists working with the Japanese National Center for Geriatrics and Gerontology (Obu, Japan) used immunoprecipitation followed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to measure levels of the three markers, APP669-711, Aβ42, and Aβ40 in two cohorts, a discovery set consisting of 121 Japanese patients and a validation set consisting of 252 Australian patients. Both sets included a mix of cognitively normal individuals, subjects with mild cognitive impairment, and subjects with clinically diagnosed Alzheimer's disease with dementia. All patients also had Aβ- positron-emission tomography (PET) imaging data, providing an assessment of their brain Aβ burdens. A subset of the Australian patients also had measurements taken of their cerebrospinal fluid Aβ levels.

The tem tested ratios of the three markers to develop a composite blood-based marker corresponding to brain Aβ levels as assessed by PET and cerebrospinal fluid (CSF) measurements. They used ratios as opposed to absolute measurements to account for individual variation in blood Aβ42 levels across individuals. A composite of the three plasma protein ratios corresponded well with both patient Aβ42 CSF levels and brain Aβ42 levels as determined by PET. Using PET measurements as the gold standard, the investigators found their plasma measurements had comparable performance to the CSF measurements, with both showing accuracy of 80.4% and areas under the curve of 83.8% and 87.4% for the blood and CSF measurements, respectively. Using the CSF measurements as the gold standard, the composite plasma markers performed with an accuracy of 80.4% and an AUC of 87.6.

The authors concluded that their results demonstrated the potential clinical utility of plasma biomarkers in predicting brain beta-amyloid burden at an individual level. These plasma biomarkers also have cost–benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening. The study was published on January 31, 2018, in the journal Nature.

Related Links:
Japanese National Center for Geriatrics and Gerontology

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.