Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Heart Attack Test Better Informs Underlying Condition

By LabMedica International staff writers
Posted on 27 Mar 2018
The serum troponin assay is the biochemical gold standard for detecting myocardial infarction (MI). A major diagnostic issue is that some believe troponin levels can rise with reversible injury, in the absence of radiologically detectable infarct.

Cardiac troponin is a protein unique to the heart, so elevated levels in the blood indicate that the heart has been damaged. The cardiac troponin blood test is still the current gold standard test used for the clinical diagnosis of MI or death of heart muscle due to lack of blood supply, but the test does not indicate the extent of cardiac damage.

Medical scientists at the University of Alberta Faculty of Medicine & Dentistry (Edmonton, AB, Canada) hypothesized that because cell death activates intracellular proteases, troponin released by irreversible infarct will be more proteolyzed than that released by milder processes. Their goal was to quantify proteolytic digestion of cardiac troponin I in patients with varying degrees of myocardial injury.

The team analyzed serum or plasma samples from 29 patients with cardiac troponin I elevations for proteolytic degradation, using three different sandwich enzyme-linked immunosorbent assays (ELISAs) designed to specifically detect the N-terminal, core, or C-terminal regions of cardiac troponin I. As predicted, the degree of proteolytic digestion increased with increasing severity of injury, as estimated by the total troponin level, and this trend was more pronounced for C-terminal versus N-terminal degradation. The highest degree of proteolytic digestion was observed in patients with ST-elevation MI; the least, in type 2 MI which is supply–demand ischemia rather than acute thrombus formation.

The authors concluded that the proteolytic degradation pattern of cardiac troponin I may be a better indicator of clinically significant MI than total serum troponin level. Distinguishing between intact and degraded forms of troponin may be useful for (a) identifying those patients with clinically significant infarct in need of revascularization, (b) monitoring intracellular proteolysis as a possible target for therapeutic intervention, and (c) providing an impetus for standardizing the epitopes used in the troponin I assay.

Peter M. Hwang, MD, an assistant professor and lead investigator of the study, said, “We postulated that when cells die during a heart attack, not only would they release troponin into the bloodstream, but they would also digest the troponin through the action of activated intracellular proteases, enzymes that digest other proteins. As predicted, we found that the degree of proteolytic digestion increased with increasing severity of heart injury.” The study was published in the February 2018 issue of the Journal of Applied Laboratory Medicine.

Related Links:
University of Alberta Faculty of Medicine & Dentistry


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Uric Acid and Blood Glucose Meter
URIT-10
New
Multi-Function Pipetting Platform
apricot PP5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.