We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cardiovascular Risk Biomarkers Found for JSLE Patients

By LabMedica International staff writers
Posted on 25 Jun 2019
Print article
Image: Lupus Erythematosus (LE) Cells are neutrophils that have engulfed lymphocyte nuclei coated with and denatured by antibody to nucleoprotein (Photo courtesy of Dr. Moustafa Abdou).
Image: Lupus Erythematosus (LE) Cells are neutrophils that have engulfed lymphocyte nuclei coated with and denatured by antibody to nucleoprotein (Photo courtesy of Dr. Moustafa Abdou).
Systemic lupus erythematosus is an autoimmune disease typically affecting women between the ages of 15 and 50, and symptoms flare up unpredictably. Approximately 20% of cases begin during childhood and in these patients the disease is suggested to be more severe.

Juvenile-onset systemic lupus erythematosus (JSLE) is an autoimmune disorder characterized by immune dysregulation, chronic inflammation and increased cardiovascular risk (CVR). Cardiovascular disease is the leading cause of mortality in JSLE not attributable to lupus flare. Symptoms of this diseases can affect many different body systems, including joints, skin, kidneys, blood cells, heart, and lungs.

A team of scientists working with the University College London (London, UK) to investigated dyslipidemia and CVR in a cohort of JSLE patients using in depth metabolomics and related this to clinical and immune cell profiles and to identify novel biomarkers to predict CVR in these patients. Metabolic biomarker analysis by Nuclear Magnetic Resonance (NMR) and in-depth immune cell phenotyping (30 subsets by flow cytometry) was performed on serum and peripheral blood mononuclear cells (PBMCs) respectively from a discovery cohort of 35 JSLE patients (median age 19 (14-25), 12 males, 23 females) compared with 39 age/sex matched healthy donors (HCs) (median age 18 (16-25), 17 males, 22 females).

The team reported that patient stratification by metabolomic profile using unbiased hierarchical clustering revealed three groups that each had a unique lipoprotein profile, immune cell phenotype and clinical presentation. Group-1 had decreased atheroprotective high-density lipoproteins (HDL) and increased atherogenic very low and low-density lipoproteins (VLDL/LDL). Group-2 had elevated HDL, but reduced VLDL/LDL indicating that these groups could be at high and low CVR respectively. Patients in Group-3 displayed an intermediate CVR but a pro-inflammatory immune cell profile.

Patients in Group-1 had a significant increase in plasmablasts and activated T-cells compared to HCs and had clinical features associated with increased disease activity. This metabolomic patient stratification was validated in a separate JSLE cohort. Importantly ApoB:A1 ratio was identified as a highly predictive biomarker distinguishing between JSLE patients in Group-1 and 2, indicating high and low CVR respectively. Finally, longitudinal analysis revealed that the ApoB:A1 ratio biomarker remained stable over time.

George A. Robinson, PhD, a senior research associate and co-author of the study, said, “Our study identifies ApoB:A1 ratio and metabolomic lipoprotein signatures as potential new biomarkers to predict cardiovascular risk in patients with juvenile-onset SLE. Patient stratification using these biomarkers could provide an opportunity for tailored disease treatments using lipid modification therapy and lifestyle interventions.” The study was presented at the Annual European Congress of Rheumatology held June 12-15, 2019, in Madrid, Spain.

Related Links:
University College London

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.