We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CSF Test Developed for Uncommon Brain Diseases

By LabMedica International staff writers
Posted on 30 Oct 2019
Print article
Image: Representative negative-stained transmission electron microscopy images of 4R RT-QuIC products seeded with brain homogenates from individuals with the designated diseases – frontotemporal dementia and Parkinsonism linked to chromosome 17; corticobasal degeneration; and progressive supranuclear palsy (Photo courtesy of National Institute of Allergy and Infectious Diseases).
Image: Representative negative-stained transmission electron microscopy images of 4R RT-QuIC products seeded with brain homogenates from individuals with the designated diseases – frontotemporal dementia and Parkinsonism linked to chromosome 17; corticobasal degeneration; and progressive supranuclear palsy (Photo courtesy of National Institute of Allergy and Infectious Diseases).
Scientific studies have linked the abnormal deposition of tau in the brain to at least 25 different neurodegenerative diseases. However, to accurately diagnose these diseases, brain tissue often must be analyzed after the patient has died.

Scientists have developed an ultrasensitive new test to detect abnormal forms of the protein tau associated with uncommon types of neurodegenerative diseases called tauopathies. This advance gives them hope of using cerebrospinal fluid, or CSF, an accessible patient sample, to diagnose these and perhaps other, more common neurological diseases, such as Alzheimer's disease.

Scientists from the National Institutes of Health (Hamilton, MT, USA) and their colleagues used the same test concept they developed when using post-mortem brain tissue samples to detect the abnormal tau types associated with Pick disease, Alzheimer's disease and chronic traumatic encephalopathy (CTE). To address the need for more meaningful biomarkers of tauopathies, they developed an ultrasensitive tau seed amplification assay (4R RT-QuIC) for the 4-repeat (4R) tau aggregates of progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and other diseases with 4R tauopathy. 4R RT-QuIC stands for 4-repeat tau protein amplified in a real-time, quaking-induced conversion process.

The assay detected seeds in 106–109-fold dilutions of 4R tauopathy brain tissue, but was orders of magnitude less responsive to brain with other types of tauopathy, such as from Alzheimer’s disease cases. The analytical sensitivity for synthetic 4R tau fibrils was ~ 50fM or 2fg/sample. A novel dimension of this tau RT-QuIC testing was the identification of three disease-associated classes of 4R tau seeds; these classes were revealed by conformational variations in the in vitro amplified tau fibrils as detected by thioflavin T fluorescence amplitudes and Fourier-transform infrared (FTIR) spectroscopy.

Tau seeds were detected in postmortem cerebrospinal fluid (CSF) from all neuropathologically confirmed PSP and CBD cases, but not in controls. CSF from living subjects had weaker seeding activities; however, mean assay responses for cases clinically diagnosed as PSP and CBD/corticobasal syndrome were significantly higher than those from control cases. The authors concluded that 4R RT-QuIC provides a practical cell-free method of detecting and subtyping pathologic 4R tau aggregates as biomarkers. The study was published on October 16, 2019, in the journal Acta Neuropathologica.

Related Links:
National Institutes of Health

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.