We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Immune Response to Insulin Identifies Risk of Juvenile-Diabetes

By LabMedica International staff writers
Posted on 08 Mar 2021
Type 1 diabetes (T1D), also known as juvenile diabetes, is a form of diabetes in which very little or no insulin is produced by the islets of Langerhans (containing β-cells) in the pancreas. More...
Insulin is a hormone required for the body to use blood sugar.

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. Type 1 diabetes (T1D) is a prototypical organ-specific autoimmune disease that results from the T-cell–mediated destruction of insulin-producing β-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms.

Diabetes Specialists at the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) collected blood samples from genetically at-risk adolescents every six months for two years. The team measured T-cell responses from genetically at-risk individuals to both naturally occurring insulin and hybrid insulin peptides, novel neo-epitopes implicated in T1D pathogenesis.

The scientists reported that both proinflammatory (interferon-γ) and anti-inflammatory (interluekin-10) cytokine responses to hybrid insulin peptides (HIPs) were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and anti-inflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.

Aaron W. Michels, MD, an Associate Professor specializing in Endocrinology, Diabetes and Metabolism, and a senior study author, said, “We want to know why people develop T1D, and this research has helped provide a lot more information and data as to what it looks like when genetically at-risk individuals are headed towards clinical diagnosis. Ideally, you want to treat a disease when it’s active, so this is a need in our field to understand when people have an immune response directed against insulin producing cells.”

The authors concluded that their results have important implications to stratify the risk of developing T1D and identifying individuals who may benefit from immune intervention studies. The study was published on February 9, 2021 in the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
University of Colorado Anschutz Medical Campus


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.