We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

WATERS CORPORATION

Waters Corp. designs, manufactures, sells and services ultra performance liquid chromatography (UPLC), high performan... read more Featured Products: More products

Download Mobile App




Mitochondrial Biomarker Predicts Type 2 Diabetes Risk

By LabMedica International staff writers
Posted on 02 Aug 2022
Print article
Image: The Xevo TQD Triple Quadrupole Mass Spectrometer features the universal ion source architecture present on advanced mass spectrometers (Photo courtesy of Waters)
Image: The Xevo TQD Triple Quadrupole Mass Spectrometer features the universal ion source architecture present on advanced mass spectrometers (Photo courtesy of Waters)

Type 2 diabetes (T2D) is characterized by chronic hyperglycemia primarily caused by both impaired insulin secretion by pancreatic β-cells (insulinopenia) and defective insulin signaling in metabolically active tissues (insulin resistance).

The nuclear-encoded protein ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of the mitochondrial ATP synthase. For a long time, IF1 was thought to act only as an inhibitor of the reverse ATPase activity of the ATP synthase. However, recent data indicate that IF1 also partially inhibits the synthetic activity of the ATP synthase in mitochondria, thus limiting oxidative phosphorylation (OXPHOS).

Molecular Biochemists at the Université de Toulouse (Toulouse, France) and their colleagues conducted a prospective study, where the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of new onset diabetes (NOD) within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman’s correlation coefficients, and the association with the risk of NOD was determined using Cox proportional‐hazards models.

Biological analyses including plasma triglycerides (TG), total cholesterol, HDL-cholesterol (HDL-C), glucose, glycated hemoglobin (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (g-GT), insulin and high-molecular-weight adiponectin (HMW-adiponectin) were performed. Plasma apoA-I and IF1 were measured by a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method. Analyses were performed on a Xevo TQD mass spectrometer with an electrospray interface and an Acquity H-Class UPLC device (Waters, Milford, MA, USA).

The scientists reported that the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the BMI and HOMA-IR. Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C and apoA-I. These correlations were confirmed in cross-sectional analyses. In Therapeutic Innovation in Type 2 DIABetes (IT-DIAB) cohort, the IF1 level was significantly associated with a lower risk of T2D after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94].

The authors concluded that they had identified plasma IF1 as a determinant of T2D onset in high-risk populations, independently of age, sex, and fasting plasma glucose levels. IF1 measurements are foreseen within the framework of other prospective cohorts of individuals at different risks of T2D to more firmly establish the predictive value of IF1 measurements in the assessment of T2D risk along with established risk factors. The study was published on July 26, 2022 in the journal Research Square.

Related Links:
Université de Toulouse 
Waters 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.