We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Smartphone-Based Readerless System Measures Blood Glucose for Early Detection of Prediabetes

By LabMedica International staff writers
Posted on 03 Apr 2023
Print article
Image: GlucoScreen displays the calculated blood glucose reading on the phone (Photo courtesy of University of Washington)
Image: GlucoScreen displays the calculated blood glucose reading on the phone (Photo courtesy of University of Washington)

Prediabetes is characterized by high blood sugar levels that may progress to type 2 diabetes. Fortunately, this condition can be reversed with lifestyle changes such as a healthier diet and exercise, if detected early. However, many individuals with prediabetes are unaware of their condition, which puts them at greater risk of developing diabetes and complications such as heart disease, kidney failure, and vision loss. Screening for prediabetes typically involves laboratory testing at a healthcare facility or using a portable glucometer for at-home testing. Unfortunately, access and cost may limit widespread screening. Now, researchers have discovered an optimal approach to enhance early detection of prediabetes.

Researchers at the University of Washington (Seattle, WA, USA) have developed GlucoScreen, which takes advantage of the capacitive touch sensing abilities of smartphones to measure blood glucose levels without the need for a separate reader. This approach will help reduce the cost and increase accessibility of glucose testing, particularly for large-scale one-time screenings. GlucoScreen test strips measure the electrochemical reaction created by mixing blood and enzymes as an amplitude along a curve at a rate of five times per second. The strip then transmits this curve data to the phone encoded as a series of touches at variable speeds using pulse width modulation. “Pulse width” refers to the distance between peaks in the signal - in this case, the length between taps. Each pulse width represents a value on the curve, with a greater distance between taps indicating a higher amplitude of the electrochemical reaction on the strip.

The new GlucoScreen system has several advantages over traditional glucose testing methods. By leveraging the capacitive touch sensing capabilities of smartphones, it eliminates the need for a separate reader, making glucose testing more accessible and cost-effective for one-time screening of a large population. Additionally, the system does not require complicated electronic components, reducing the cost of manufacturing and power consumption compared to conventional communication methods like Bluetooth and Wi-Fi. The test strip is designed with photodiodes, which draw power from the phone's flash, eliminating the need for batteries or a USB connection. The GlucoScreen app walks users through the testing process, and after the data is transmitted from the strip to the phone, the app uses machine learning to analyze the data and calculate a blood glucose reading.

The researchers conducted both in vitro and clinical testing to evaluate their approach. In the clinical study, they enrolled 75 consenting patients who were scheduled to undergo a laboratory blood glucose test. The performance of GlucoScreen was compared against that of a conventional strip and glucometer, with the laboratory test serving as the ground truth. While additional testing is required, the preliminary results suggest that GlucoScreen's accuracy is comparable to that of a glucometer. Of significance, the system was found to be accurate at the critical threshold between a normal blood glucose level of 99 mg/dL or below and prediabetes, which is defined as a blood glucose level between 100 and 125 mg/dL. The researchers believe that GlucoScreen's performance will improve with further inputs.

“In conventional screening, a person applies a drop of blood to a test strip, where the blood reacts chemically with the enzymes on the strip. A glucometer is used to analyze that reaction and deliver a blood glucose reading,” explained lead author Anandghan Waghmare, a Ph.D. student in the Allen School’s UbiComp Lab. “We took the same test strip and added inexpensive circuitry that communicates data generated by that reaction to any smartphone through simulated tapping on the screen. GlucoScreen then processes the data and displays the result right on the phone, alerting the person if they are at risk so they know to follow up with their physician.”

“Because we use the built-in capacitive touch screen that’s present in every smartphone, our solution can be easily adapted for widespread use. Additionally, our approach does not require low-level access to the capacitive touch data, so you don’t have to access the operating system to make GlucoScreen work.” explained co-author Jason Hoffman, a Ph.D. student in the Allen School. “We’ve designed it to be ‘plug and play.’ You don’t need to root the phone — in fact, you don’t need to do anything with the phone, other than install the app. Whatever model you have, it will work off the shelf.”

“One of the barriers I see in my clinical practice is that many patients can’t afford to test themselves, as glucometers and their test strips are too expensive. And, it’s usually the people who most need their glucose tested who face the biggest barriers,” said Thompson, a family physician and professor in the UW Department of Family Medicine and Department of Global Health. “Given how many of my patients use smartphones now, a system like GlucoScreen could really transform our ability to screen and monitor people with prediabetes and even diabetes.”

Related Links:
University of Washington

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.