We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Detects Cancer at Lightning Speed through Sugar Analyses

By LabMedica International staff writers
Posted on 04 Jul 2024
Print article
Image: The mass spectrometer can detect different structures of the sugar molecules, called glycans, in cells (Photo courtesy of Lundbergs forskningsstiftelse/Magnus Gotander)
Image: The mass spectrometer can detect different structures of the sugar molecules, called glycans, in cells (Photo courtesy of Lundbergs forskningsstiftelse/Magnus Gotander)

Glycans, which are structures made up of sugar molecules within cells, can be analyzed using mass spectrometry. This technique is particularly useful because these sugar structures can reveal the presence of various cancer types within cells. However, interpreting the data from mass spectrometry, specifically, the fragmentation patterns of glycans, requires meticulous human analysis. This detailed scrutiny can take from several hours to days per sample and is only reliably performed by a handful of highly skilled experts globally, as it involves complex, learned detective work over many years. This need for expert analysis creates a significant bottleneck in utilizing glycan analysis for applications like cancer detection, especially when numerous samples need examination. Researchers have now introduced an artificial intelligence (AI) model that enhances the ability to detect cancer through sugar molecule analysis, proving to be both quicker and more effective than the traditional semi-manual approaches.

The AI model, named Candycrunch, was trained by researchers at the University of Gothenburg (Gothenburg, Sweden) using a vast database containing over 500,000 examples of various fragmentations and associated structures of sugar molecules. This extensive training has equipped Candycrunch to accurately determine the precise structure of sugars in a sample in 90% of cases, aiming to soon match the accuracy levels seen in the sequencing of other biological sequences like DNA, RNA, and proteins. The AI model described in a scientific article published in Nature Methods automates glycan analysis and completes it in just a few seconds. Moreover, Candycrunch can identify sugar structures that are typically overlooked by human analysts due to their low concentrations. Due to its speed and precision, Candycrunch significantly speeds up the identification of glycan-based biomarkers, which are crucial for diagnosing and predicting cancer. Thus, the model holds promise in aiding researchers to discover new glycan-based biomarkers for cancer.

“We believe that glycan analyses will become a bigger part of biological and clinical research now that we have automated the biggest bottleneck,” said Daniel Bojar, Associate Senior Lecturer in Bioinformatics at the University of Gothenburg.

Related Links:
University of Gothenburg

New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
Gold Member
Turnkey Packaging Solution
HLX
New
H. pylori Test
STANDARD Q H. pylori Ab Test
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The lateral flow test could detect prostate cancer more quickly and with greater accuracy (Photo courtesy of Valley Diagnostics)

Groundbreaking Test Could Detect Prostate Cancer Within Minutes Via Urine Sample

In the UK, over 52,000 men are diagnosed with prostate cancer annually, with up to one-quarter of these cases identified at a later stage, requiring more intensive treatments. The cost to the NHS for these... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.