Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




ML-Powered Gas Sensors to Detect Pathogens and AMR at POC

By LabMedica International staff writers
Posted on 24 Jul 2025

Fast and accurate diagnosis is critical to improving patient care and combating the global threat of antimicrobial resistance (AMR). More...

Traditional diagnostic methods for infections, such as gas chromatography-mass spectrometry and proton transfer reaction–mass spectrometry, while effective, are expensive, technically demanding, and unsuitable for point-of-care settings. Interpreting volatile organic compounds (VOCs)—the unique chemical signatures emitted by microbes and infected tissues—can be challenging due to their complexity and overlap. Moreover, these VOC signals are often influenced by environmental variables, which adds to diagnostic inaccuracy. A report published in Cell Biomaterials explores the use of sensor systems combined with advanced computational models to detect and classify microbial VOCs with high precision.

This report by researchers at ETH Zurich (Zurich, Switzerland) presents a promising approach that combines gas sensors and machine learning for real-time infection diagnosis. The report explores how gas sensors made from nanostructured metal oxides, conductive polymers, and hybrid composites could offer a compact, affordable, and practical solution for detecting VOCs. These sensors measure changes in electrical resistance or conductance when exposed to microbial byproducts. To decode the complex patterns produced by VOCs, the researchers assessed the viability of integrating machine learning algorithms such as support vector machines (SVM), random forests, long short-term memory (LSTM) neural networks, and gradient boosting to classify sensor data and improve diagnostic accuracy. The models were assessed across bacterial cultures, infected tissues, and clinical biofluids such as urine and blood, demonstrating its ability to distinguish bacterial species and differentiate between drug-resistant and susceptible strains.

The team compiled findings from recent studies that tested these sensor-ML systems on bacterial cultures, infected tissue samples, and clinical biofluids such as urine and blood. The systems achieved high sensitivity and specificity, accurately identifying pathogens like Escherichia coli and Staphylococcus aureus, as well as detecting resistance profiles such as those involving extended-spectrum beta-lactamases. The researchers have emphasized the need for training these machine learning models on comprehensive datasets that reflect clinical variability to ensure robust performance. Ongoing efforts include miniaturizing devices for point-of-care use, functionalizing sensor surfaces, and mitigating environmental interference such as humidity and temperature. Although further development and clinical validation are necessary, these systems offer a clear path toward noninvasive, rapid diagnostics that can complement laboratory methods and support better antimicrobial stewardship.


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.