We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Groundbreaking Genomics Method to Improve Early Detection of Genetic Diseases

By LabMedica International staff writers
Posted on 02 Dec 2024
Print article
Image: The groundbreaking genomics method has the potential to uncover insights previously missed (Photo courtesy of 123RF)
Image: The groundbreaking genomics method has the potential to uncover insights previously missed (Photo courtesy of 123RF)

Researchers using next-generation sequencing are uncovering valuable insights from the non-coding segments of human DNA, which were once considered "junk DNA." These segments, called non-coding RNAs, hold critical information on the presence of diseases. In a new approach, scientists are working to adapt laboratory equipment initially designed to analyze only mRNA, the coding parts of genetic material, and also examine the non-coding regions of DNA. This innovative genomics technique could reveal the genetic mechanisms behind both human health and diseases, offering a potential method for early detection of conditions like cancer and dementia. The research, published in Genome Biology, proposes a novel approach to exploring the root causes of various diseases.

Over the past two decades, researchers have used advanced tools to analyze non-coding RNAs and identify the 3% of sequences that are coded. As part of the Canadian Epitranscriptomics Project, scientists at the University of Manitoba (Winnipeg, Canada) are leveraging this technology to create the "Epitranscriptome Atlas," which aims to map the remaining 97% of the human genome. This effort will enhance our understanding of how alterations in non-coding RNAs contribute to disease.

“My lab applies what we call next-generation sequencing and bioinformatics to magnify the impact of recent advances in AI algorithms,” said Dr. Athanasios Zovoilis, associate professor of biochemistry and medical genetics in the Max Rady College of Medicine. “The right equipment for this new field of study has been in our lab for some time, but we lacked the tools to use it to its fullest potential, until now. The impact of employing AI and novel genomics approaches is that researchers across the world can now leverage next-generation sequencing in the new field of epitranscriptomics, exploring the genetic interactions of non-coding RNAs.”

“If we imagine the human genome as an atlas of the earth, with each gene represented by one satellite image, we have so far revealed fewer than 36,000 of the necessary 1.2 million images to complete our atlas. The mapped RNA sequences represent specific human tissues, and we are now able to begin filling in large sections of our atlas to pinpoint the genomic locations of diseases and other important biological functions for the first time,” Zovoilis added.

 

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.