We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Supply Can Be Improved by Pathogen Inactivation Methods

By Labmedica staff writers
Posted on 07 Jan 2008
Print article
The safety of the American blood supply is maintained by screening potential donors for a variety of risks, including recent infections, recent antibiotic intake, bleeding conditions, fever, and sexual practices, among others. The blood transfusion community should consider pathogen inactivation methods as an alternative way to assure the safety and availability of the nation's blood supply.

For example, if a person has traveled outside of the United States in the past 12 months, he or she may be prohibited from donating blood. Pathogen inactivation methods, which reduce the risk of human immunodeficiency virus (HIV), West Nile Virus (WNV), and Escherichia coli transmission, are now widely used in Europe, and offer several ways to test and treat blood for use.

The riboflavin method, which works by damaging DNA to eliminate its capability of regenerating, is effective for inactivating intracellular and extracellular HIV, West Nile virus, Staphylococcus, E. coli and several others.

The amotosalen method creates cross-links, preventing harmful DNA or RNA from separating and replicating. Amotosalen also inhibits the synthesis of certain proteins, reducing the likelihood of transfusion reactions. Amotosalen-treated platelets are now widely used in Europe and the riboflavin method was recently approved there. Amotosalen-treated platelets are awaiting approval by the U.S. Food and Drug Administration (FDA; Rockville, MD, USA).

Finally, the red blood cell (RBC) method cross-links DNA and RNA, effectively targeting nucleic acids in pathogens. Further developments are needed to begin a new phase II trial of this method in the United States.

"For more than 20 years we have used a method that includes asking potential donors a series of questions to determine whether or not we should use their blood,” said Jeffrey McCullough, M.D., FASCP, professor of laboratory medicine and pathology at the University of Minnesota (Minneapolis, MN, USA). "But now there are proactive methods available that allow us to use blood that we may not have used if we didn't get a certain answer. We could potentially be turning away a lot of usable blood with the question method. Someone very well may have traveled, but didn't contract anything.”

Prof. McCullough's review of the shortcomings of the current paradigm of blood banking and the newer pathogen inactivating methods appeared in the December 2007 issue of the American Journal of Clinical Pathology (AJCP).


Related Links:
University of Minnesota
U.S. Food and Drug Administration
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.