We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Test Detects Difficult-to-Diagnose Chronic Blood Cancer

By LabMedica International staff writers
Posted on 26 Dec 2013
Print article
Image: Bone marrow aspirate smear from a patient with chronic myelomonocytic leukemia, a myeloproliferative neoplasm (Photo courtesy of M.Yared).
Image: Bone marrow aspirate smear from a patient with chronic myelomonocytic leukemia, a myeloproliferative neoplasm (Photo courtesy of M.Yared).
The current blood test used to diagnose blood cancer works by identifying mutation in a specific gene; however, it is not necessary that the gene should be present in every patient.

The Janus kinase 2 gene (JAK2) occurs in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge.

A collaborating team of scientists from the University of Cambridge (UK) and the Wellcome Trust Sanger Institute (Hinxton, UK) and other institutes performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1,345 hematologic cancers, 1,517 other cancers, and 550 controls. They established phylogenetic trees using hematopoietic colonies and assessed calreticulin subcellular localization using immunofluorescence and flow cytometry.

The team analyzed the results of exome sequencing of DNA from granulocytes and constitutional DNA obtained from purified T cells or buccal cells in 168 patients with myeloproliferative neoplasms. The identification of appropriate constitutional DNA samples is a challenge among patients with myeloproliferative neoplasms, since circulating T cells and buccal cells may be contaminated by neoplastic cells. On sequencing the patients' DNA, the scientists identified a new gene called CALR, the mutations of which were associated with chronic blood cancer. They also noticed a rise in platelet counts and a decline in hemoglobin levels associated with JAK2 mutation.

The authors concluded that detection of CALR mutations in peripheral blood could potentially be used as a diagnostic tool in the same way that tests for JAK2 mutations have simplified and improved the accuracy of diagnosis of patients with myeloproliferative neoplasms worldwide. Peter J. Campbell, MB, ChB, PhD, from the Sanger Institute, who co-led the research, said, “There is now a sense of completeness with these disorders , the vast majority of our patients can now have a definitive genetic diagnosis made. In the next year or two, we will see these genetic technologies increasingly used in the diagnosis of all cancers, especially blood cancers.” The study was published on December 10, 2013, in the New England Journal of Medicine.

Related Links:

University of Cambridge
Wellcome Trust Sanger Institute 


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Gold Member
Rotavirus Rapid Test
Rotavirus Cassette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.