We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Mutation Discovered in Blood Disorder Aplastic Anemia

By LabMedica International staff writers
Posted on 07 Oct 2014
Print article
Image: Photomicrograph of a hypocellular bone marrow biopsy, due to lack of hematopoietic cells, from a patient with aplastic anemia (Photo courtesy of the Autonomous University of Zacatecas).
Image: Photomicrograph of a hypocellular bone marrow biopsy, due to lack of hematopoietic cells, from a patient with aplastic anemia (Photo courtesy of the Autonomous University of Zacatecas).
A gene mutation has been discovered that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells.

Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. Mutations in telomerase or other telomere maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure.

Scientists at the Children's Hospital of Philadelphia (PA, USA) working with international colleagues investigated the family of a patient who had presented with severe thrombocytopenia and macrocytosis, and has been diagnosed with aplastic anemia. The family history includes other cases of bone marrow failure, as well as oral carcinoma and leukemia. Peripheral blood DNA was available from the patient, her parents, and maternal grandparents.

Whole exome sequencing was performed and the exonic regions were captured using SureSelect Human All Exon kit (Agilent; Santa Clara, CA, USA) and pair-end sequencing was carried out on HiSeq 2000 machines (Illumina; San Diego, CA, USA). A Telomere Flow-Fluorescence In Situ Hybridization (Flow-FISH) was performed and the subsequent flow cytometry was performed on a FACS CANTO II (BD Biosciences; San Jose, CA, USA). Other complimentary methodologies were also used to corroborate the initial findings.

The 18 year-old patient, her mother and maternal grandmother presented with bone marrow failure of varying severity, and their decreasing ages of presentation in successive generations suggested disease anticipation. The team found that that the mutation in Adrenocortical Dysplasia Homolog gene (ACD) alters the telomere-binding protein tripeptidyl peptidase 1 (TPP1), disrupting the interactions between telomere and telomerase. Without access to telomerase to help maintain telomeres, blood cells lose their structural integrity and die, resulting in bone marrow failure.

Hakon Hakonarson, MD, PhD, the director of the Center for Applied Genomics, and study co-leader, said, “Identifying this causal defect may help suggest future molecular-based treatments that bypass the gene defect and restore blood cell production. This improved understanding of the underlying molecular mechanisms may suggest new approaches to treating disorders such as aplastic anemia. For instance, investigators may identify other avenues for recruiting telomerase to telomeres to restore its protective function.” The study was published on September 9, 2014, in the journal Blood.

Related Links:

Children's Hospital of Philadelphia
Agilent 
Illumina 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.