We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Newly Developed Point-of-Care Hemoglobinometer Evaluated

By LabMedica International staff writers
Posted on 10 Dec 2014
Print article
Image: The TrueHb hemometer testing kit (Photo courtesy of the Indian Institute of Technology Delhi).
Image: The TrueHb hemometer testing kit (Photo courtesy of the Indian Institute of Technology Delhi).
Hemoglobin (Hb) concentration is routinely measured using automated analyzers, and although these counters are very accurate and reliable, they are expensive and too cumbersome for portability.

Portable hemoglobinometer can potentially provide the solution to the challenges as they are affordable, precise, and convenient and require only a tiny sample of capillary or venous blood, do not require any calibration and display digital results immediately.

Scientists at the Indian Institute of Technology Delhi (IITD; New Delhi, India) collected 200 hundred randomly selected venous blood samples, submitted for hemogram study at the Department of Hematology, All India Institute of Medical Sciences (New Delhi, India). The hemoglobin values of these samples were evenly spread. There were 67, 76, and 57 samples in the ranges of 3.4–8 g/dL, 8–12.5 g/dL, and 12.5–20 g/dL respectively.

The investigators evaluated the performance of the portable hemometer called TrueHb (New Delhi, India) developed by IITD, and compared it with an automated five-part hematology analyzer intended for in vitro diagnostic use in clinical laboratories, the Sysmex counter XT 1800i (Sysmex; Kobe, Japan). The two set of values were comparatively analyzed and the repeatability of the performance of TrueHb was also evaluated against Sysmex value.

The scatter plot of TrueHb values and Sysmex values showed linear distribution with positive correlations. The intraclass correlation (ICC) values between the two set of values was found to be very high. The mean difference in Bland–Altman plots of TrueHb values against the Sysmex values was found to be −0.02, with limits of agreement between -0.777 and 0.732 g/dL. Statistical analysis suggested good repeatability in results of TrueHb, having a low mean coefficient of variation (CV) of 2.22, against 4.44, that of Sysmex values, and 95% confidence interval of 1.99 to 2.44, against 3.85 to 5.03, that of Sysmex values.

The authors concluded that a strong positive correlation between the two measurements devices suggest that the newly developed hemometer, TrueHb, can potentially replace a pathology laboratory analyzer for the purpose of measuring hemoglobin in blood samples. Keeping the performance of TrueHb in view, the newly developed device exhibited the potential to become a dependable tool for healthcare providers for measuring and monitoring hemoglobin levels of patients in conventional healthcare setups as well as in field studies. The study was published on November 22, 2014, in the International Journal of Laboratory Hematology.

Related Links:
Indian Institute of Technology Delhi 
All India Institute of Medical Sciences
TrueHb



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.