We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Test Results of Fingerstick Blood Vary Significantly

By LabMedica International staff writers
Posted on 29 Nov 2015
Print article
Image: Blood obtained via fingerstick is commonly used in point-of-care assays (Photo courtesy of The Health).
Image: Blood obtained via fingerstick is commonly used in point-of-care assays (Photo courtesy of The Health).
Blood obtained via fingerstick is commonly used in point-of-care assays, but few studies have assessed variability in parameters obtained from successive drops of fingerstick blood, which may cause problems for clinical decision making and for assessing accuracy of point-of-care tests.

The most accurate way to carry out medial laboratory tests is to draw blood from a vein and send it to a laboratory but sometimes, such as in low-resource settings, results are needed more rapidly, or the health professional is not trained to draw vein-blood, or there is no laboratory. In such settings, there is a higher reliance on fingerstick tests.

Bioengineers at Rice University (Houston, TX, USA) used a hematology analyzer to analyze the hemoglobin concentration, total white blood cell (WBC) count, three-part WBC differential, and platelet count in six successive 20 µL of blood collected from one fingerstick from each of 11 donors. The team used a hemoglobinometer to measure the hemoglobin concentration of 10 drops of fingerstick blood from each of seven donors to check whether the minimum droplet size made a difference and they checked all the results against blood taken from donors' veins. They also followed best practice to ensure accurate results. For example, they wiped away the first droplet to remove traces of disinfectant, and they did not squeeze or "milk" the finger.

The results showed that hemoglobin content, platelet count and white blood cell count varied significantly from drop to drop. The average percent coefficient of variation (CV) for successive drops of fingerstick blood was higher by up to 3.4 times for hemoglobin, 5.7 times for WBC count, three times for lymphocyte count, 7.7 times for granulocyte count, and four times for platelets than in venous controls measured using a hematology analyzer. The average percent CV for fingerstick blood was up to five times higher for hemoglobin than venous blood measured using a point-of-care hemoglobinometer. The investigators found that averaging the results of six to nine successive droplet tests produced results on a par with the venous blood tests.

Meaghan M. Bond, a doctoral student and first author of the study, said, “In some donors, the hemoglobin concentration changed by more than 2 g/dL in the span of two successive drops of blood. Our results show that people need to take care to administer fingerstick tests in a way that produces accurate results because accuracy in these tests is increasingly important for diagnosing conditions like anemia, infections and sickle-cell anemia, malaria, HIV and other diseases.” The study was published on November 18, 2015, in the American Journal of Clinical Pathology.

Related Links:

Rice University


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit
New
Toxoplasma Rapid Test
Toxo IgG/IgM Rapid Test Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.