Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Device Measures Stiffness and Stickiness in Erythrocytes

By LabMedica International staff writers
Posted on 13 Mar 2016
In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion, known as vaso-occlusion, in SCD patients.

Red blood cells (erythrocytes) containing normal hemoglobin are flexible and shaped like a doughnut with a thin flat area in the middle instead of a hole. This allows them to squeeze round bends in blood vessels and through smaller ones to deliver vital oxygen to tissues and organs. However, sickle hemoglobin has a tendency to form stiff rods inside the red blood cell, changing it into the crescent or sickle shape that gives the disease its name.

Scientists at Case Western Reserve University (Cleveland, OH, USA) used a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. They measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbSS) containing RBCs in blood samples obtained from 24 subjects.

The microfluidic system is composed of a Poly(methyl methacrylate) (PMMA) cover, a double sided adhesive (DSA) layer, and a glass slide base. Microfluidic channels are functionalized with fibronectin, which mimics the microvasculature wall in a closed system and can process whole blood. Adhered sickled RBCs deform in microfluidic channels in response to applied flow shear stress. By assessing the extent of stiffness and stickiness, or the "dynamic deformability and adhesion," of red blood cells, the new microfluidic device offers great potential as a way to monitor progression of sickle cell disease. Other ways to measure stiffness and stickiness in red blood cells, such as atomic force microscopy and optical tweezers do exist, but they do not lend themselves to working with whole blood in a clinical setting.

To assess dynamic deformability of red blood cells, the investigators used what they call a dynamic deformability index (DDI), which they define as "the time-dependent change of the cell's aspect ratio. Essentially, a cell's DDI is a measure of how quickly it springs back to its normal shape after experiencing flow shear stress. The team describes a range of tests where they measured the DDI of deformable and non-deformable red blood cells. They also compared adhesion of deformable and non-deformable red blood cells from blood samples taken from sickle cell patients. They tested the stickiness of the cells under different flow shear stresses, both within and outside ranges experienced in normal blood vessels.

The scientists showed that DDI of HbSS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, they observed subpopulations of HbSS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, they tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. They observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. The study was published on February 19, 2016, in the journal Technology.

Related Links:

Case Western Reserve University



Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
H.pylori Test
Humasis H.pylori Card
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.