We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Body Surface Area Helps Predict Response to Blood Transfusion

By LabMedica International staff writers
Posted on 06 Oct 2016
Print article
Image: A bag of donor’s blood before cross matching and transfusion (Photo courtesy of the Nursing Times).
Image: A bag of donor’s blood before cross matching and transfusion (Photo courtesy of the Nursing Times).
The risks associated with unnecessary transfusion of blood products, including infections, transfusion reactions, and, in some clinical situations, alloimmunization, makes a judicious approach to transfusion is of the utmost importance.

However, despite several decades of experience with red blood cell (RBC) transfusion, the ability to predict transfusion requirements based on the expected rise in hemoglobin (Hgb) has been limited. As a result, decisions regarding RBC transfusion have been based on clinical experience and gestalt.

Medical scientists at the Eastern Virginia Medical School (Norfolk, VA, USA) determined the variability of response to red blood cell transfusion and to predict which patients will have an Hgb rise higher or lower than that predicted by the long-standing convention of “one and three”. The study was a retrospective chart review in a single hospital and data for 167 consecutive patient encounters were reviewed. The dataset was randomly divided into derivation and validation subsets with no significant differences in characteristics. Pre-transfusion Hgb was checked no earlier than 12 hours prior to transfusion, and post-transfusion Hgb checked between three and 24 hours after transfusion.

DeltaHgb was defined as post-transfusion Hgb minus pre-transfusion Hgb per red blood cell unit. They classified all the patients in both the subsets as “high responders” (DeltaHgb greater than 1 g/dL) or as “low responders” (DeltaHgb equal to or less than 1 g/dL). In univariate analysis, age, sex, body weight, estimated blood volume, and body surface area were significantly associated with response category. The mean DeltaHgb per RBC unit in the series was 1.23 g/dL. This lends support to the rule of thumb, which lacks large published datasets to support this rule. Then, multiple different prediction models were tested using a variety of variables.

The authors concluded that the best-performing model used body surface area (BSA) and correctly classified 69% of patients, with a sensitivity of 84.6% and a specificity of 43.8% when tested on an independent dataset without any overlap with the derivation dataset. The study was published on September 21, 2016, in the Journal of Blood Medicine.

Related Links:
Eastern Virginia Medical School

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
Treponema Pallidum Test
ZEUS IFA Fluorescent Treponemal Antibody-Absorption (FTA-ABS) Test System

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.