Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immune System Genes Linked to Chronic Lymphocytic Leukemia

By LabMedica International staff writers
Posted on 24 Feb 2017
Chronic lymphocytic leukemia (CLL) is an indolent B-cell malignancy that has a strong genetic component, as evidenced by the eightfold increased risk seen in relatives of CLL patients.

The risk of developing chronic lymphocytic leukemia (CLL) has been linked to the inheritance of nine regions of DNA, five of which help white blood cells fight disease.

An international team, co-led by scientists at The Institute of Cancer Research perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totaling 6,200 cases and 17,598 controls after replication. They analyzed genome-wide association data from populations of European ancestry from Europe, North America and Australia, identifying nine new risk loci.

The fidelity of imputation as assessed by the concordance between imputed and directly genotyped single nucleotide polymorphisms (SNPs) was examined in a subset of samples. Replication genotyping of UK samples was performed using competitive allele-specific polymerase chain reaction (PCR KASPar) chemistry. Replication genotyping of Mayo samples was performed using Sequenom MassARRAY.

The team found that one of the new variants resides in the gene B-cell scaffold protein with ankyrin repeats 1 (BANK1), only ever activated in a type of white blood cell called B cells, and linked to the autoimmune disease lupus. Another was found in the gene Zinc finger and BTB domain-containing protein 7A (ZBTB7A), which regulates B cells numbers, so errors in this gene could lead to too many B cells in the bloodstream and bone marrow. A third was found in a region of chromosome 22, which has been linked with the risk of developing multiple sclerosis.

Richard Houlston, MD, PhD, a Professor of Molecular and Population Genetics and co-leader of the study, said, “We knew people were more likely to develop chronic lymphocytic leukemia if someone in their family had suffered from the disease, but our new study takes a big step towards explaining the underlying genetics. CLL is essentially a disease of the immune system, and it's fascinating that so many of the new genetic variants we have uncovered seem to directly affect the behavior of white blood cells and their ability to fight disease.” The study was published on February 6, 2017, in the journal Nature Communications.


Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.