We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Increased Immune Reaction Associated with Myeloproliferative Neoplasia

By LabMedica International staff writers
Posted on 03 Mar 2017
Print article
Image: Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells (Photo courtesy of Ed Uthman).
Image: Blood smear of a myeloproliferative neoplasia patient with a significant increase in the number of platelets (purple) as compared to the clearly larger red blood cells (Photo courtesy of Ed Uthman).
Patients afflicted by myeloproliferative neoplasia, which are a group of chronic malignant bone marrow diseases, bear a mutation in their hematopoietic stem cells. The mutation leads to the bone marrow producing too many blood cells, which thickens the blood.

It has recently discovered that certain cells of the immune system also bear this mutation in those patients that possess a particularly large number of altered stem cells. The impact of this scenario on the defense against pathogens has been investigated.

Scientists at Helmholtz Centre for Infection Research investigated patients with different severities of myeloproliferative neoplasia. The bone marrow harbors the hematopoietic stem cells that produce the various types of red and white blood cells and platelets. They are induced to do so by messenger substances that bind to them and trigger a reaction chain, in which many different components partake. In a rare malignant group of blood diseases called myeloproliferative neoplasia (MPN), most of the patients have hematopoietic stem cells that bear an error in their genetic material, known as a mutation.

The mutation usually resides in a certain component of the reaction chain called Janus kinase 2 (JAK2) and causes the signal for haematopoiesis to be permanently switched on in the stem cells. Depending on which type of stem cell is afflicted, the bone marrow of the patients produces the corresponding blood cells and the blood becomes too thick and may clog the vessels. MPN patients usually are treated with an inhibitor of JAK2 that suppresses the continuous signal triggering hematopoiesis. However, this also weakens the immune cells such that the patients become more susceptible to infections.

The scientists found that 60% of the patients, who have a particularly large number of damaged stem cells, bear the mutation in their so-called T cells as well. These cells of the immune system specifically fight against pathogens that entered the body. The scientists then infected mice with Listeria monocytogenes. Listeria bacteria colonize food items and can cause severe infections in humans including meningitis. When the scientists investigated the mice, they found: seven days after the infection with Listeria, the mice with the mutated T cells had 100-fold lower levels of bacteria in their spleen than the control mice. They had formed clearly more specific T cells directed against Listeria and were thus able to control the infection better than the control animals without a mutation in T cells.

Dirk Schlüter, MD, a professor and senior author of the study said, “It was previously unknown that so many MPN patients bear the mutation in their T cells as well. In order to find out what this actually means for the patients, we combined the clinical studies with studies on mice.” The study was published on January 11, 2017, in the journal Leukemia.

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.