Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Clotting Assay Predicts Patient Transfusion Needs

By LabMedica International staff writers
Posted on 30 May 2017
A new test that quantifies clotting ability can help identify trauma patients who are most in need of a massive blood transfusion, according to a new study.

The new test, developed by researchers at the University of Colorado School of Medicine, modifies thrombelastography (TEG)--a test that measures the viscoelastic properties of whole blood to determine the ability of blood to clot--by adding tissue plasminogen activator (tPA) to the blood sample. More...
As tPA saturates endogenous inhibitors, systemic hyperfibrinolysis occurs, which can help stratify the underlying degree of shock and identify early coagulation changes in order to predict progression to massive transfusion.

To test this hypothesis, the researchers analyzed blood samples from 324 trauma patients, of which 17% required a massive blood transfusion. Trauma activations were analyzed using rapid TEG and the modified TEG-tPA test. Clinical scores, which included shock index, assessment of blood consumption, and trauma-associated severe hemorrhage were then compared with TEG measurements to predict the need for massive transfusion, using areas under the receiver operating characteristic curves.

The results showed that rapid TEG and tPA-TEG parameters were significantly different in all massive transfusion patients compared to non-massive transfusion patients. Low-dose tPA lysis at 30 minutes had the largest the area under the receiver operating characteristic curve for prediction of massive transfusion, similar to the international normalized ratio (INR) of prothrombin time. When the tPA-TEG assay was used together with INR, it improved identification of patients in need of transfusion by 40%, and identified 97% of patients who did not, thereby preventing unnecessary transfusions. The study was published on May 15, 2017, in JACS.

“The tPA-TEG identifies trauma patients who require massive transfusion efficiently in a single assay that can be completed in a shorter time than other scoring systems, which has improved performance when combined with international normalized ratio,” concluded lead author Hunter B. Moore, MD, of the department of surgery. “This new method is consistent with our understanding of the molecular events responsible for trauma-induced coagulopathy.”

TEG is performed by gently rotating a blood sample through approximately 5º six times a minute in order to imitate sluggish venous flow and to activate coagulation. The speed at which the sample coagulates on a thin wire probe depends on the activity of the plasma coagulation system, platelet function, fibrinolysis, and other factors. The patterns of changes in strength and elasticity in the clot provide information about how well the blood can perform hemostasis, and how well or poorly different factors are contributing to clot formation.


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.