We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Slide-Based Approach Introduced for CBCs

By LabMedica International staff writers
Posted on 14 Sep 2017
Print article
Image: The novel automated slide-based approach: a microscope slide is moved under a blunt needle, providing a constant flow of whole blood. Typically, 1 μL of blood is deposited (Photo courtesy of James W. Winkelman, MD, et al).
Image: The novel automated slide-based approach: a microscope slide is moved under a blunt needle, providing a constant flow of whole blood. Typically, 1 μL of blood is deposited (Photo courtesy of James W. Winkelman, MD, et al).
The most commonly performed clinical laboratory test is the complete blood count (CBC). Currently, laboratory CBC systems obtain cell counts and morphologic information by maintaining the blood cells in a liquid “flow” and by using the Coulter impedance-based orifice or laser-based cytometry.

A novel automated slide-based approach to the complete blood count and white blood cell differential count has been introduced. A proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique has been compared with the current flow-based technology.

Clinical Laboratory Scientists at Brigham and Women's Hospital (Boston, MA, USA) and their colleagues analyzed specimens were from a wide array of deidentified adult and pediatric inpatients and outpatients with a range of medical conditions, including hematologic and other malignancies. Specimens were sought and collected for comparison that had very high or low results for various parameters, without regard to diagnosis.

The investigators operated a prototype instrument that uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5,000 red blood cells and a variable number of platelets that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1,857 specimens on both the new instrument and a flow-based XE-5000 hematology analyzer.

The team found excellent correlations were obtained between the prototype instrument and a flow-based system. All parameters showed good to excellent correlation over a range of values spanning 1.79 × 106/μL to 6.8 × 106/μL for red cells; 0.01 × 103/μL to 60.4 × 103/μL for leucocutes; and 5 × 103/μL to 922 × 103/μL for platelets. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63).

The authors concluded that quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood. The study was published in the August 2017 issue of the journal Archives of Pathology & Laboratory Medicine.

Related Links:
Brigham and Women's Hospital

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.