Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Positive Lymphocyte Gene Rearrangement Evaluated for Hematologic Malignancies

By LabMedica International staff writers
Posted on 08 Sep 2020
The diagnosis of a lymphoid malignancy requires the establishment of monoclonality of a lymphocyte population through morphologic assessment and laboratory testing, such as flow cytometry, immunohistochemistry, and cytogenetic analysis.

These methods can yield conflicting results, however, and in up to 15% of cases of suspected lymphoid malignancies, molecular assessment of immunoglobulin (IG) and/or T-cell receptor (TCR) gene rearrangements is necessary to confirm a diagnosis. the presence of a population of B or T cells with the same gene rearrangement pattern is highly supportive of lymphoid malignancy.

Medical scientists at the Yale School of Medicine (New Haven, CT, USA) extracted data from medical records of patients who underwent IG or TCR gene rearrangement testing at an affiliated hospital from January 1, 2013 to July 6, 2018. Date of testing, specimen source, and morphologic, flow cytometric, immunohistochemical, and cytogenetic characterization of the tissue source were recorded. Gene rearrangement results were categorized as test positive/phenotype positive (T+/P+), test positive/phenotype negative (T+/P−), test negative/phenotype negative (T−/P−), or test negative/phenotype positive (T−/P+) based on comparison to other studies and/or final diagnosis. Patient records were reviewed for subsequent diagnosis of hematologic malignancy for patients with positive gene rearrangements, but no other evidence for a disease process.

The authors reported that a total of 136 patients with 203 gene rearrangement studies were analyzed. For TCR studies, there were two T+/P− and one T−/P+ results in 47 peripheral blood (PB) assays, as well as seven T+/P− and one T−/P+ results in 54 bone marrow assays. Regarding IG studies, three T+/P− and 12 T−/P+ results in 99 bone marrow (BM) studies were identified. None of the 12 patients with T+/P− TCR or IG gene rearrangement studies later developed a lymphoproliferative disorder.

The 12 T/Pþ IG studies included four cases of multiple myeloma (MM), three cases of monoclonal gammopathy of undetermined significance, one case of low-grade B-cell non-Hodgkin’s lymphoma, one case of monoclonal B-cell lymphocytosis, one case of low-grade B–non-Hodgkin’s lymphoma plus MM, one case of low-grade B–non-Hodgkin’s lymphoma plus myelodysplastic syndrome, and one case of monoclonal gammopathy of undetermined significance plus adult T-cell leukemia/lymphoma. The two T/Pþ TCR studied corresponded to one diagnosis of T-cell acute lymphoblastic leukemia and one diagnosis of T-cell large granular lymphocytic leukemia.

The authors concluded that the results from the present study suggest positive IG/TCR gene rearrangement studies are not predictive of lymphoproliferative disorders in the context of otherwise negative BM or PB findings. As such, when faced with equivocal pathology reports, clinicians can be practically advised that isolated positive IG/TCR gene rearrangement studies do not indicate a need for closer surveillance. The study was published on July 31, 2020 in the journal Archives of Pathology & Laboratory Medicine.

Related Links:
Yale School of Medicine


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Immunofluorescence Analyzer
MPQuanti
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.