We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Next-Generation Sequencing Impacts All Aspects of Myelodysplastic Syndrome Care

By LabMedica International staff writers
Posted on 25 Nov 2021
Print article
Image: Bone marrow smear from a person with myelodysplastic syndrome showing aberrant morphology and maturation (dysmyelopoiesis), resulting in ineffective blood cell production (Photo courtesy of Melbourne Blood Specialists)
Image: Bone marrow smear from a person with myelodysplastic syndrome showing aberrant morphology and maturation (dysmyelopoiesis), resulting in ineffective blood cell production (Photo courtesy of Melbourne Blood Specialists)
Myelodysplastic Syndrome (MDS) is a type of blood cancer that affects the bone marrow. It causes low levels of one or more types of blood cells in the blood. MDS is more common in people aged over 70, but it can happen at any age.

Signs and symptoms of MDS may include dizziness, fatigue, weakness, shortness of breath, bruising and bleeding, frequent infections, and headaches. Management of myelodysplastic syndromes is most often intended to slow the disease, ease symptoms and prevent complications. Common measures include blood transfusions and medications to boost blood cell production.

Hematologists at the Moffitt Cancer Center (Tampa, FL, USA) and their colleagues incorporated next-generation sequencing into standard of practice that will be required for patients with myelodysplastic syndrome and will impact all facets of care. They highlighted TP53 mutations to show the importance of personalization, particularly for subgroups that respond poorly to standard-of-care therapy. They identified TP53 mutation status and variant allele frequency as predictors of survival among patients with myelodysplastic syndrome and secondary acute myeloid leukemia. The very adverse-risk group, which represents the majority of patients, consists of those with a high variant allele frequency of 40%, complex karyotype or more than one mutation, or a mutation in the setting of TP53.

The scientists noted that clinicians can wait for results of sequencing panels for the vast majority of patients with myelodysplastic syndrome, adding that turnaround time continues to improve. Meanwhile, other factors that can provide a high pretest probability of whether a patient may have a TP53 mutation include therapy-related history, multiple abnormalities, refractory anemia excess blasts with increased ringed sideroblasts and p53 immunohistochemistry. Other mutations that potentially could be targeted include IDH1 and IDH2 mutations, which are rare in myelodysplastic syndrome, and splicing mutations.

To improve outcomes for this molecular subset of patients, scientists are investigating eprenetapopt, a first-in-class p53 reactivator. Results of a phase 2 study showed the agent in combination with azacitidine induced responses in more than 70% of patients, with complete remission rates of 40% to 50%. The phase 3 study, however, did not meet its primary endpoint of improved complete remission, as other trials of novel combinations that include the agent are ongoing and the investigators remains hopeful.

David A. Sallman, MD, a Hematologist and lead author of the study, said, “We really think going forward, particularly in the setting of novel therapy, that achievement of p53 clearance, as low as possible, potentially at that point then bridging to transplant, may be the ultimate approach.” The study was presented at the 39th Annual Chemotherapy Foundation Symposium held November 3-5, 2021 in New York, NY, USA.

Related Links:
Moffitt Cancer Center

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.