We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Deep Sequencing of CD34+ Cells Detects Measurable Residual Disease in AML

By LabMedica International staff writers
Posted on 31 Mar 2022
Print article
Image: The BD FACSAria III cell sorter is equipped with 4 lasers and the instrument enables multicolor analysis of up to 15 parameters (Photo courtesy of BD Biosciences)
Image: The BD FACSAria III cell sorter is equipped with 4 lasers and the instrument enables multicolor analysis of up to 15 parameters (Photo courtesy of BD Biosciences)

Monitoring of measurable residual disease (MRD) in patients with acute myeloid leukemia is predictive for disease recurrence and may identify patients who benefit from treatment intensification. Current MRD techniques rely on multicolor flow cytometry or molecular methods, but are limited in applicability or sensitivity.

For patients with hematological malignancies such as acute myeloid leukemia (AML) or high risk myelodysplastic syndrome (MDS), the application of allogeneic stem cell transplantation (alloHSCT) often remains the only curative treatment option. Nevertheless, relapse after SCT occurs in 30% to 70% of AML patients and is the major cause of treatment failure, with dismal prognosis and a two-year survival of <20%.

Hematologists at the University Hospital Carl Gustav Carus TU Dresden (Dresden, Germany) and their colleagues retrospectively analyzed 429 peripheral blood (PB) and 55 bone marrow (BM) samples of 40 AML and high-risk MDS patients, with/without molecular relapse based on CD34+ donor chimerism (DC), in complete remission after alloHSCT. The team evaluated the feasibility of a novel approach for MRD detection in PB, which combines immunomagnetic pre-enrichment and fluorescence-activated cell sorting (FACS) for isolation of CD34+ cells with error-reduced targeted next-generation sequencing (NGS).

The team isolated CD34+ / CD117+ cells from mononuclear cells (MNCs) using magnet activated cell sorting (MACS) by positive selection using the CD34+ or the CD117+ Microbead Kit (Miltenyi Biotec, Bergisch-Gladbach, Germany). For FACS-sorting of CD34+ / CD117+ cells, the CD34 or CD117 enriched fractions were incubated with the monoclonal antibodies CD45 FITC / CD34 PE (BD Biosciences, San Jose, CA, USA). Sorting of CD34+ / CD117+ cells was then conducted on a BD FACS Aria II cell sorter, aiming for 5,000-10,000 CD34+ / CD117+ cells and a purity of >90%. DNA extraction For DNA extraction, the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) or the “ZR 168 Viral DNA Kit” (Zymo Research, Orange, CA, USA), for CD34+ / CD117+ cell counts, was used.

The investigators reported that enrichment of CD34+ cells for NGS increased the detection of mutant alleles in PB ~1000-fold (median Variant Allele Frequency [VAF] 1.27% versus 0.0046% in unsorted PB). Although a strong correlation was observed for the parallel analysis of CD34+ PB cells with NGS and DC, the combination of FACS and NGS improved sensitivity for MRD detection in dilution studies ~10-fold to levels of 10-6. In both assays, MRD detection was superior using PB versus BM for CD34+ enrichment. Importantly, NGS on CD34+ PB cells enabled prediction of molecular relapse with high sensitivity (100%) and specificity (91%), and significantly earlier (median 48 days, range 0-281) than by CD34+ DC or NGS of unsorted PB, providing additional time for therapeutic intervention. Moreover, panel sequencing in CD34+ cells allowed the early assessment of clonal trajectories in hematological complete remission.

The authors have proposed a novel, easily accessible and robust method for ultra-sensitive MRD detection in peripheral blood, which is applicable to the vast majority of AML patients. First results demonstrate the feasibility of targeted deep sequencing on CD34+ cells for early relapse prediction in clinical settings, with superior sensitivity and specificity as compared to chimerism-based MRD assessment or the use of unsorted PB for NGS. The study was published on March 23, 2022 in the journal Blood Advances.

Related Links:
University Hospital Carl Gustav Carus TU Dresden 
Miltenyi Biotec 
BD Biosciences 
Qiagen 
Zymo Research

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.