Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Prognostic Role for Circulating Tumor Cells Reinforced in Myeloma

By LabMedica International staff writers
Posted on 20 Jun 2022

Bone marrow plasma cells (BMPCs) are a marker of disease burden in monoclonal gammopathies and help discriminate among monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and symptomatic myeloma.

Despite the improvement of multiple myeloma (MM) risk assessment, some patients still show dismal outcomes. Retrospective and real-world studies confirmed that the detection of circulating tumor plasma cells (CTC) is a biomarker of adverse outcome.

Hematologists at the University of Torino (Torino, Italy) and their colleagues prospectively assessed CTC at diagnosis of myeloma in the phase II multicenter, randomized FORTE trial, which included transplant-eligible patients younger than 65. Data on CTC analysis included 401 patients, 269 of whom had detectable levels. The median CTC percentage was 0.02%, which corresponded to a median absolute number of 1.24 cells/µL. Median follow-up for the study population was 50 months. CTC were analyzed at diagnosis with two-tube single-platform flow cytometry (sensitivity 4 × 10–5) and minimal residual disease (MRD) was assessed by second-generation multiparameter flow cytometry (sensitivity 10–5).

The team reported that using the 0.07% cutoff, investigators identified 130 patients as CTC-high and 271 as CTC-low. About half of the CTC-low group had undetectable CTCs. Patients in the CTC-high group had lower rates of MRD negativity (42% versus 59%) and lower rates of complete response to induction therapy (43% versus 54%). By multivariable analysis, the CTC-high group had significantly worse progression-free survival (PFS: HR = 2.61) and overall survival (OS: HR = 2.61). The CTC-high group had inferior 4-year PFS (38% versus 69%) and 4-year OS (68% versus 92%). The CTC levels, but not the bone marrow plasma cell levels, affected the outcome. The only factor that reduced the negative impact of CTC-high was the achievement of MRD negativity.

The authors concluded that in multiple myeloma, increasing levels of CTC above an optimal cutoff represent an easy-to-assess, robust, and independent high-risk factor. The achievement of MRD negativity is the most important factor that modulates their negative prognostic impact. The study was published on June 6, 2022 in the Journal of Clinical Oncology.


Related Links:
University of Torino 


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Uric Acid and Blood Glucose Meter
URIT-10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.