We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Tool Analyzes Blood Platelets Faster, Easily and Accurately

By LabMedica International staff writers
Posted on 12 Dec 2023
Print article
Image: Graphic image shows a blood clot forming in an artery (Photo courtesy of Emory University)
Image: Graphic image shows a blood clot forming in an artery (Photo courtesy of Emory University)

Platelets, the small, colorless fragments in our blood, play a critical role in stopping bleeding by clumping at sites of blood vessel injuries. However, platelets can sometimes underperform, leading to insufficient clotting and uncontrolled bleeding, or overperform, resulting in dangerous blood clots that can cause heart attacks or strokes. This issue becomes even more pronounced during cardiac surgery. Currently, platelet function is assessed using aggregometry, which evaluates how quickly and to what extent platelets in a blood sample clump together. Now, researchers have developed a new method for testing platelet function in blood samples that is quicker, simpler, and more precise than existing methods.

This innovative technique, developed by researchers at Emory University (Atlanta, GA, USA), marks a significant advancement in the field, offering the first in-depth view of the molecular forces exerted by activated platelets in patient blood samples. The findings suggest that this technology could be instrumental in evaluating the impact of antiplatelet medications on individuals and better understanding bleeding risks for patients undergoing cardiopulmonary bypass surgery. Remarkably, this method only requires a small blood sample, about the size of a drop, compared to the tablespoon-sized samples needed for current tests. Its heightened sensitivity could be particularly useful for diagnosing infants with rare, inherited platelet disorders.

The method utilizes synthetic-DNA tension probes, a concept the research team developed over a decade ago, capable of detecting cellular forces as small as a few piconewtons – significantly less than the weight of a paper clip. The researchers amplified the probes' signal using an enzyme known as CRISPR-associated 12a. They developed the Mechano-Cas12a Assisted Tension Sensor (MCATS), a highly precise and sensitive device that can measure cellular traction forces generated by as few as 2,000 platelets in a sample. The robust signal generated is detectable with a standard fluorometer, a common tool in blood tests, and MCATS is compatible with a plate reader for handling multiple samples simultaneously, essential for research.

The team tested MCATS's effectiveness by analyzing blood samples from healthy volunteers and patients pre- and post-cardiopulmonary bypass surgery. Their findings confirmed that MCATS was responsive to platelet mechanical forces and could accurately measure the impact of various antiplatelet drugs, from aspirin to prescription medications. MCATS readings correlated with the likelihood of patients needing platelet transfusions to control bleeding post-surgery. The researchers are now conducting a prospective study to further assess MCATS as a diagnostic tool, testing blood samples from patients with platelet disorders before and after treatment to evaluate therapy effectiveness.

“The bottom line is that MCATS is a whole new way to measure platelet function using a really tiny sample,” said Roman Sniecinski, a professor in Emory School of Medicine’s Department of Anesthesiology and a leading expert in the field of perioperative coagulation. “It’s telling us something specific that we haven’t been able to measure before and that can give us a new way to understand what’s going on with platelet dysfunction and the best methods for controlling it.”

Related Links:
Emory University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.