We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Chip Containing Antibody-Coated Nanoparticles Improves Cancer Detection

By LabMedica International staff writers
Posted on 11 Feb 2010
Print article
A highly sensitive method for detecting cancer can detect single molecules of compounds in blood that signify specific types of tumor.

The technology is based on a microfluidic chip with tiny channels into which a blood sample is drawn. Specially sensitized nanoparticles in the channels capture marker proteins in the blood that indicate certain types of cancer.

The Fraunhofer Institute for Silicate Research (ISR; Wurzburg, Germany) is developing the new diagnostic method to detect cancer in its initial stages so that treatment can start early and improve the patient's chance of recovery. The method should improve cancer detection 100-fold.

Similar testing systems already exist but their measurements are not sufficiently precise, and they can only detect molecules when present in the blood in large quantities. These tests, which must be carried out in a laboratory, are also time-consuming and costly.

Dr Jörn Probst, head of the business unit life science at the ISC explained, "We have placed antibody-occupied nanoparticles on the sensor electrode which 'fish' out the relevant proteins. For this purpose, we repeatedly pump the blood across the electrode surface. As with a river, the flow is fastest in mid-channel and the water runs more slowly near the bank. We have therefore made a sort of fishing rod using nanoparticles which registers the antibodies in the middle of the blood flow where most proteins swim by per unit of time." If an antibody catches the matching protein that indicates a tumor, the electrical charge distribution shifts and this is picked up by the electrode.

The ISC groups are developing a first demonstrator combining four independent single-molecule-sensitive biosensors. They are also working on the simultaneous detection of several tumor markers, which will increase the clarity of tests.

Related Links:

Fraunhofer Institute for Silicate Research




New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.