We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cell Viability Tests Compared with Microchip Method

By LabMedica International staff writers
Posted on 12 Apr 2011
Print article
A technique for the automatic cell viability measurement with a microscopic cell counter and microchip has been evaluated.

An appraisal has been made of different methods of cell viability testing, an essential tool for performing cell-based studies and clinical laboratory tests.

Scientists at Korea University Guro Hospital (Seoul, Korea) compared three different methods to test the viability of blood cells. Blood was drawn from 11 healthy volunteers and mononuclear cells were separated immediately from the heparinized whole blood, and the viable cells were diluted subsequently down from 100% to, 75%, 50%, 25%, and 1%. The cell viability tests were performed simultaneously with the following three methods: the conventional manual trypan blue exclusion method; the flow cytometry measurement with propidium iodide stain; and the newly developed automated fluorescence microscopic cell counter with microchip.

The linearity, precision, and correlations from three methods were analyzed and compared. The correlations data from the microscopic cell counter were in good agreement with both the conventional trypan blue method and the flow cytometry. The precision and linearity from the microscopic cell counter method with microchip were superior in comparison with the conventional method. The new microscopic cell counter with microchip, known as Adam (NanoenTek, Inc.; Seoul, Korea), was further developed and improved to produce the results within five minutes, including all procedural steps.

In the manual trypan blue stain, only 200 cells were counted to measure their viability, but in Adam, larger number of cells, approximately between 1,000 and 3,000 cells, were counted. Greater number of counted cells and the repetitions of the experiments by the microscopic cell counter and microchip for the analyses provided the better statistical significance. The real-time cellular images and archived data could also be used for analyzing other parameters. The study was published online on March 15, 2011, in the Journal of Clinical Laboratory Analysis.

Related Links:
Korea University Guro Hospital
NanoenTek, Inc.

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.