We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Method Directly Identifies Antigens

By LabMedica International staff writers
Posted on 23 Apr 2012
Print article
A novel method for identifying antigens is based on the isolation of T cells present in samples of affected tissues obtained from patients with autoimmune diseases.

The genetic blueprints for the specific antigen-binding T-cell receptors (TCRs) produced by these cells, have been transferred into a cultured cell line that grows well in the laboratory and contains a version of the gene for the Green Fluorescent Protein (GFP) that is specifically expressed if a TCR is activated.

Scientists at the Ludwig Maximilians University (Munich, Germany) collaborated with a team from the Max Planck Institute for Neurobiology (Munich, Germany) to develop the new method that can identify the antigens that initiate immune reactions and may help to prevent misdirected attacks in the future. They used genetic engineering techniques, to generate cells that emit green fluorescent light when stimulated by the binding of a cognate antigen.

The T-cells are incubated with a collection of some 100 million peptides, which are short amino acid sequences like those normally recognized by TCRs. If even a single peptide represented in the library is recognized by a specific TCR, the corresponding cell synthesizes GFP and it can be detected by its green fluorescence, allowing the bound antigen to be identified. The method thus provides a relatively simple way of identifying single autoimmune antigens from huge numbers of possible suspects.

An initial test carried out using cells specific for a known influenza antigen confirmed the efficacy of the method. The investigators were able unequivocally to select out and identify the correct antigen from all the other peptides used in the test. The technique is so rapid and so sensitive that several million antigens can be analyzed in a matter of hours. This opens up a wide range of possible applications, ranging from the analysis of the reactive antigens responsible for autoimmune diseases like multiple sclerosis or psoriasis to the identification of new tumor or viral antigens. The practical potential is so significant that the method is the subject of a patent application. The study was published online on April 8, 2012, in the journal Nature Medicine.

Related Links:

Ludwig Maximilians University
Max Planck Institute for Neurobiology


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.