Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Method Directly Identifies Antigens

By LabMedica International staff writers
Posted on 23 Apr 2012
A novel method for identifying antigens is based on the isolation of T cells present in samples of affected tissues obtained from patients with autoimmune diseases. More...


The genetic blueprints for the specific antigen-binding T-cell receptors (TCRs) produced by these cells, have been transferred into a cultured cell line that grows well in the laboratory and contains a version of the gene for the Green Fluorescent Protein (GFP) that is specifically expressed if a TCR is activated.

Scientists at the Ludwig Maximilians University (Munich, Germany) collaborated with a team from the Max Planck Institute for Neurobiology (Munich, Germany) to develop the new method that can identify the antigens that initiate immune reactions and may help to prevent misdirected attacks in the future. They used genetic engineering techniques, to generate cells that emit green fluorescent light when stimulated by the binding of a cognate antigen.

The T-cells are incubated with a collection of some 100 million peptides, which are short amino acid sequences like those normally recognized by TCRs. If even a single peptide represented in the library is recognized by a specific TCR, the corresponding cell synthesizes GFP and it can be detected by its green fluorescence, allowing the bound antigen to be identified. The method thus provides a relatively simple way of identifying single autoimmune antigens from huge numbers of possible suspects.

An initial test carried out using cells specific for a known influenza antigen confirmed the efficacy of the method. The investigators were able unequivocally to select out and identify the correct antigen from all the other peptides used in the test. The technique is so rapid and so sensitive that several million antigens can be analyzed in a matter of hours. This opens up a wide range of possible applications, ranging from the analysis of the reactive antigens responsible for autoimmune diseases like multiple sclerosis or psoriasis to the identification of new tumor or viral antigens. The practical potential is so significant that the method is the subject of a patent application. The study was published online on April 8, 2012, in the journal Nature Medicine.

Related Links:

Ludwig Maximilians University
Max Planck Institute for Neurobiology



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.