We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Serological Assays Compared for MERS-Coronavirus Infection

By LabMedica International staff writers
Posted on 28 Oct 2015
Middle East respiratory syndrome (MERS) poses a major threat to global public health and validated serological assays are important for diagnosis and for seroepidemiology to define prevalence and risk factors. More...


Serological assays for detecting antibody for MERS-coronavirus (CoV) infection include antibody arrays, enzyme-linked immunosorbent assay (ELISA), immune-fluorescence, microneutralization (MN), plaque reduction neutralization (PRNT) and MERS-spike pseudoparticle neutralization tests (ppNT).

Scientists at the Seoul National University College of Medicine (Republic of Korea) and their colleagues in Hong Kong tested 95 sera from 17 patients collected two to 46 days after symptom onset with real-time reverse transcription polymerase chain reaction (RT-PCR) confirmed MERS-CoV infection diagnosed during an outbreak of MERS in South Korea. They compared the RT-PCR results with PRNT antibody titers using 90% (PRNT90) and 50% (PRNT50) plaque reduction end points, MN, MERS-spike ppNT and S1-ELISA tests. The sera were also used to investigate the antigenic similarity of three genetically diverse strains of MERS-CoVs. The authors had previously reported that early PRNT50 and S1-ELISA antibody responses in this patient-cohort were associated with improved clinical outcome.

The MERS-CoV strains used in the virus neutralization assays belonged to clade A (MERS-CoV-strain EMC), clade B (dromedary camel MERS-CoV Al-Hasa FKU-HKU13 2013) as well as a virus from a distinct non A and B clade (dromedary camel Egypt NRCE-HKU 270 2013). The PRNT assays were performed in a 24-well format in duplicate for each serum dilution. Antibody titers were defined as the highest serum dilutions that resulted at ≥ 50% (PRNT50) and ≥ 90% (PRNT90) reduction in the number of plaques, respectively. The S1 ELISA EI 2604–9601G kit (EUROIMMUN; Luebeck, Germany) was used for detection of human immunoglobulin G (IgG) against MERS-CoV.

The different virus neutralization assays (MN; ppNT PRNT50; PRNT90) all had excellent correlation between them. The PRNT50 antibody test was more sensitive in detecting early antibody responses and had higher antibody titers throughout, as would be expected, given the less stringent end point of ≥ 50% reduction of plaque numbers, in contrast to the ≥ 90% reduction of plaques needed for the PRNT90 antibody titer endpoint. The semi-quantitative optical density (OD) ratios of the MERS S1 ELISA had acceptable but lower Spearman correlations with the different neutralization tests, in terms of the time to becoming positive in patients with MERS.

The authors concluded that the different types of neutralization or ppNT assays can be used in MERS-CoV diagnosis and seroepidemiology. PRNT50 was more sensitive than other assay formats and may be the only assay that can be positive early in the course of infection and in a few patients with poor serologic responses. Genetically diverse MERS-CoV are antigenically homogenous suggesting that future vaccines generated by any MERS-CoV strain will cross-protect against genetically and geographically diverse viruses. The study was published on October 15, 2015, in the journal Eurosurveillance.

Related Links:

Seoul National University College of Medicine 
EUROIMMUN 



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.