We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Failing Hearts Switch Fuels to Continue Generating Energy

By LabMedica International staff writers
Posted on 24 Feb 2016
Print article
A new study provides fresh biochemical insight into heart failure and may eventually lead to new diagnostic and pathology tests as well as therapeutic targets to prevent or slow progression of the disease. The findings suggest a new approach to help treat early stages.

The research was led by Daniel Kelly, MD, scientific director of the Lake Nona campus of Sanford Burnham Prebys Medical Discovery Institute (SPB; La Jolla, CA & Lake Nona, FA, USA) as a collaborative study by scientists from SPB, Duke University, University of Illinois, and University of Cologne.

“Our research shows that as the heart fails, it loses its ability to burn fatty acids—the building blocks of fat—and instead starts using ketone bodies as an alternative fuel. It’s almost like the heart is starving because it doesn’t have the enzymatic machinery to burn fat anymore,” said Dr. Kelly.

To better understand what metabolic changes occur in place of fatty acid-burning, the team studied well established mouse models of the early and late stages of heart failure. They analyzed heart muscle cells to identify enzymes involved in metabolizing fuel that may ultimately become targets for therapies. They found that levels of BDH1, an enzyme involved in ketone metabolism, were 2x as high in mice with both early stage and complete heart failure compared to normal animals.

“It was surprising that BDH1 was increased in the failing heart, because this is an enzyme that is involved in burning ketones,” said Dr. Kelly, “We find it more in brain and liver, but one wouldn’t expect it to be very active in the heart.”

The new results suggest that a heart in the midst of failure has the ability to reprogram itself to take in more ketones and use them in a lower oxygen consumption fuel metabolism than fatty acid metabolism. Future studies on whether this is a productive or a faulty adaptive fuel shift could lead to new therapeutic avenues. Improved treatments would also be good news as the prevalence of heart failure is expected to increase in the coming years.

The study was published January 27, 2016, in the journal Circulation.

Related Links:

Sanford Burnham Prebys Medical Discovery Institute


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.