We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




DNA Levels in Blood Correlated with Ovarian Cancer Outcomes

By LabMedica International staff writers
Posted on 04 Jan 2017
Print article
Image: The Biomark microfluidic system for polymerase chain reactions (Photo courtesy of Fluidigm).
Image: The Biomark microfluidic system for polymerase chain reactions (Photo courtesy of Fluidigm).
The development of blood biomarkers that can be used for early detection of cancer or to measure tumor burden and response to treatment is a major goal of translational cancer studies across all cancer types.

Both tumor-derived proteins and DNA can be detected in circulating plasma and serum from cancer patients. Levels of circulating tumor DNA (ctDNA) detected in a blood test can be correlated with the size of ovarian cancers and can predict a patient's response to treatment or time to disease progression.

Scientists at the Cancer Research UK Cambridge Institute (Cambridge, UK) measured levels of ctDNA carrying mutations in the tumor protein 53 gene (TP53), which are detected in 99% of patients with high-grade serous ovarian cancer (HGSOC). They analyzed 318 blood samples from 40 HGSOC patients, taken before, during, and after standard-of-care treatment were analyzed. Computerized tomography (CT) images of the patients' tumors were collected, as well as data on the progression of their cancers.

In order to quantify ctDNA levels, patient-specific TP53 TaqMan assays were designed to target mutations identified in formalin-fixed paraffin-embedded (FFPE) tissue. Digital PCR using the Biomark microfluidic system (Fluidigm, South San Francisco, CA, USA) was used to measure ctDNA levels in cell-free DNA from plasma samples collected during courses of chemotherapy. Serum CA-125 level was routinely monitored using a two-site sandwich immunoassay on a Siemens Centaur XP auto-analyzer.

The team found the fraction of mutated TP53 in ctDNA (TP53MAF) was correlated with volume of disease as measured by CT scan and unlike CA-125 pre-treatment TP53MAF levels were also correlated with each patient's time to progression. While CA-125 took 84 days to reflect the full extent of changes after chemotherapy, changes were reflected in TP53MAF in a median of just 37 days. In patients being treated for a relapse, a decrease in TP53MAF of more than 60% was associated with a longer time to progression, while a decrease of 60% or less was associated with poor response to chemotherapy and a time to progression of less than six months.

The authors concluded that their findings have strong potential for clinical utility owing to the ease of assaying DNA in plasma and the low cost and speed of ctDNA testing. Having very early information on response would empower patients and physicians to test alternative treatment options and have high utility in trials that link biomarkers to targeted therapy. The study was published on December 20, 2016, in the journal Public Library of Science Medicine.

Related Links:
Cancer Research UK Cambridge
Fluidigm

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.