We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




POC Assay Developed for Reliable Blood Grouping

By LabMedica International staff writers
Posted on 07 Apr 2017
Print article
Image: ABO grouping for A, B, AB, and O as indicated by the presence of teal color in the observation zone (red dashed box). Images of multiplexed assays testing (C) ABO/Rh and (D) rare blood systems (Photo courtesy of Third Military Medical University).
Image: ABO grouping for A, B, AB, and O as indicated by the presence of teal color in the observation zone (red dashed box). Images of multiplexed assays testing (C) ABO/Rh and (D) rare blood systems (Photo courtesy of Third Military Medical University).
Rapid and accurate blood grouping plays a critical role in multiple scientific disciplines, particularly in the biological and medical sciences and especially for pregnancy, blood transfusion, and bone marrow transplantation.

A fast, accurate, and versatile paper-based blood test has been developed that could be performed without the need for specialized equipment providing a more cost-effective strategy for blood grouping. The blood typing assay is based on the color change that occurs when a common pH indicator dye reacts with blood.

Medical scientists at the Third Military Medical University, Chongqing, China, assayed 3,550 venous and finger prick blood samples on a paper-based test using bromocresol green. Blood groups were primarily identified by a diagnostic laboratory using the BioVue gel-card assay. The paper-based assay used immobilized antibodies and bromocresol green dye for rapid and reliable blood grouping, where dye-assisted color changes corresponding to distinct blood components provide a visual readout.

ABO antigens and five major Rhesus antigens could be detected within 30 seconds and simultaneous forward and reverse ABO blood grouping using small volumes (100 μL) of whole blood was achieved within two minutes through on-chip plasma separation without centrifugation. A machine-learning method was developed to classify the spectral plots corresponding to dye-based color changes, which enabled reproducible automatic grouping. Using optimized operating parameters, the dye-assisted paper assay exhibited comparable accuracy and reproducibility to the classical gel-card assays in grouping 3,550 human blood samples. When translated to the assembly line and low-cost manufacturing, the proposed approach may be developed into a cost-effective and robust universal blood-grouping platform.

The authors concluded that the assay not only provides a new strategy for blood grouping but can also be used in time- and resource-limited situations, such as war zones, in remote areas, and during emergencies. Characterized by an intensified and streamlined workflow capability, the proposed blood-grouping assay may be further developed into highly compact and fully automatic platforms that are highly efficient and economical, making large-scale manufacturing possible. The study was published on March 15, 2017, in the journal Science Translational Medicine.

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.