Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microfluidic Device Captures Tumor-Specific Extracellular Vesicles

By LabMedica International staff writers
Posted on 21 Mar 2018
A microfluidic device has been developed that can capture glioblastoma-derived extracellular vesicles, with high specificity, using very small blood samples, which would be useful for pediatric patients.

The microfluidic channels in the device contain a cocktail of antibodies that are specific for molecules found on glioblastoma-derived extracellular vesicles, meaning the vesicles are captured as they pass through the channels.

Scientists at Massachusetts General Hospital (Charlestown, MA, USA) and their colleagues collected blood samples from a total of 13 brain cancer patients and six healthy donors were included in this study. More...
Microfluidic devices consisted of 8-Channel herringbone structures were fabricated using standard photolithography and different strategies were tested for optimal configuration of capture antibodies on the surface of the microfluid device.

Isolated extracellular vesicles (EVs) were quantified using a tunable resistive pulse sensing (TRPS) qNano instrument. EV’s were isolated with immobilized with streptavidin-coated magnetic particles. The cyclic olefin copolymer (COC) The COC microfluidic device allowed direct imaging of captured EVs. Micrographs were captured with an LSM510 confocal microscope equipped with a ×63 Zeiss Plan-APOCHROMAT oil objective. RNA was isolated and quantified. Digital polymerase chain reaction, library preparation for RNA sequencing and RNA sequencing analysis was also performed.

The team reported that the sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within three hours. Using the EVHB-Chip, They achieved 94% tumor-EV specificity, a limit of detection of 100 EVs per μL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. This approach allowed for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, they detected the mutant Type III epidermal growth factor receptor (EGFRvIII) messenger RNA (mRNA).

Shannon L. Stott, PhD, an Assistant Professor of Medicine and the lead investigator of the study, said, “Our device’s ability to sort tumor-specific extracellular vesicles out from the billions of extracellular vesicles carried through the blood stream may lead to the development of much-needed diagnostic and monitoring tools for this and other hard-to-treat cancers.” The study was published online on January 12, 2018, in the journal Nature Communications.

Related Links:
Massachusetts General Hospital


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.