We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tool Predicts Deadly Form of Mycosis Fungoides

By LabMedica International staff writers
Posted on 21 May 2018
Print article
Image: A histopathology of classic Mycosis fungoides. This skin biopsy specimen demonstrates an atypical lymphocytic infiltrate going up into the epidermis (epidermotropism) in the absence of epidermal edema (spongiosis). The collection of atypical lymphocytes surrounding a Langerhans cell is a Pautrier microabcess, the hallmark of classic MF (Photo courtesy of the University of Pennsylvania).
Image: A histopathology of classic Mycosis fungoides. This skin biopsy specimen demonstrates an atypical lymphocytic infiltrate going up into the epidermis (epidermotropism) in the absence of epidermal edema (spongiosis). The collection of atypical lymphocytes surrounding a Langerhans cell is a Pautrier microabcess, the hallmark of classic MF (Photo courtesy of the University of Pennsylvania).
Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course.

However, a small subset of early-stage cases develops progressive and fatal disease and because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. If identified early, patients with this aggressive form of MF may be eligible for a stem cell transplant to cure the disease, but once MF progresses and becomes treatment-resistant, it is nearly impossible to achieve the complete remission required for a successful stem cell transplant.

Scientists from the Brigham and Women’s Hospital (Boston, MA, USA) and their colleagues evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene (TCRB) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. They compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF).

The team used high-throughput DNA sequencing, a technique that allowed them to sequence massive amounts of DNA at once, producing a snapshot of the TCRB genes from a large number of cells at the site of the lesion. The team could use this to measure “tumor clone frequency (TCF)” – the percentage of T cells that are clones of the mutated MF lymphoma T cells. An elevated TCF predicted the likelihood of progression and overall survival of patients with MF with high sensitivity and specificity.

The team found that in early-stage patients, a TCF of more than 25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF.

Thomas S. Kupper, MD, a professor of Dermatology and senior author of the study, said, “Under the microscope, benign T cell and MF T cells are hard to distinguish. However, every T cell has a unique DNA sequence of its T cell receptor, which we can detect by high-throughput DNA sequencing. High throughput DNA sequencing and calculations of TCF allow us to make predictions that would never before have been possible. As a physician who has treated patients with this disease for decades, I am excited to be involved with work that so directly and profoundly affects the care and management of these patients.” The study was published on May 9, 2018, in the journal Science Translational Medicine.

Related Links:
Brigham and Women’s Hospital

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.