We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Portable Device Rapidly Detects Measles and Rubella

By LabMedica International staff writers
Posted on 11 Jun 2018
Print article
Image: The Measles-Rubella Box (MRBox) is a low-cost, portable technology to detect measles and rubella infection status and immunity, for use in developing nations (Photo courtesy of University of Toronto).
Image: The Measles-Rubella Box (MRBox) is a low-cost, portable technology to detect measles and rubella infection status and immunity, for use in developing nations (Photo courtesy of University of Toronto).
Serosurveys are useful for assessing population susceptibility to vaccine-preventable disease outbreaks. Many point-of-care diagnostics rely on lateral flow assays or microfluidics; however, these methods generally cannot test multiple samples simultaneously.

A potential solution is a compact and portable, field-deployable, point-of-care system relying on digital microfluidics that can rapidly test a small volume of capillary blood for disease-specific antibodies. A portable device has been developed that detects measles and rubella antibodies in about 35 minutes, and it has potential applications in both remote and conventional laboratory settings.

Scientists at the University of Toronto (Toronto, ON, Canada) and the international colleagues collected blood samples from 144 children age nine months to 59 months and caregivers in a refugee camp in Kenya to test a new device in the field. The device called the Measles-Rubella Box (MRBox) is a bead-based chemiluminescent enzyme-linked immunosorbent assay (ELISA) that uses microscopic magnetic beads that have the measles or rubella virus attached to them.

The immunoglobulin G (IgG) assays were determined to have sensitivities of 86% [95% confidence interval (CI), 79 to 91% (measles)] and 81% [95% CI, 73 to 88% (rubella)] and specificities of 80% [95% CI, 49 to 94% (measles)] and 91% [95% CI, 76 to 97% (rubella)] (measles, n = 140; rubella, n = 135). The assays were compared with reference tests, measles IgG and rubella IgG ELISAs from Siemens Enzygnost conducted in a centralized laboratory. The MRBox could test simultaneously four samples, although digital microfluidic (DMF) IgG detection was less sensitive and specific than laboratory-based ELISA testing of matched serum samples.

Darius G. Rackus, PhD, a senior author of the study, said, “We demonstrated this technology for its use in remote settings, where sending tests to a centralized laboratory is not an option. However, we think this technology could also be useful for traditional laboratories or even in a distributed (versus centralized) testing model.” The study was originally published on April 28, 2018, in the journal Science Translational Medicine.

Related Links:
University of Toronto

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.