We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immune Cells Linked to Malaria-Induced Anemia Through Autoantibody Production

By LabMedica International staff writers
Posted on 28 Nov 2019
Print article
Image: Photomicrograph of a blood smear that revealed the presence of numerous Plasmodium falciparum ring-form parasites. Note that some red blood cells (RBCs) contain multiple parasites. Anemia is a common and sometimes deadly complication of malaria infections (Photo courtesy of Centers of Disease Control and Prevention/Dr. Greene).
Image: Photomicrograph of a blood smear that revealed the presence of numerous Plasmodium falciparum ring-form parasites. Note that some red blood cells (RBCs) contain multiple parasites. Anemia is a common and sometimes deadly complication of malaria infections (Photo courtesy of Centers of Disease Control and Prevention/Dr. Greene).
Malaria is still a major global health threat with over 200 million new infections and around 400,000 deaths per year. Anemia is a common complication associated with malaria that contributes significantly to the great morbidity and mortality associated with the disease.

Despite its high clinical relevance, the mechanisms underlying malarial anemia in patients remain largely unknown. The difficulty in studying this syndrome arises at least in part from its multi-factorial etiology, as malaria causes both the clearance (through complement-mediated lysis or phagocytosis) of infected and uninfected erythrocytes and bone marrow dyserythropoiesis.

An international team of scientists led by those at New York University School of Medicine (New York City, NY, USA) recruited 24 patients who were aged between 18 and 65 years, and a diagnosis of Plasmodium falciparum malaria by microscopy. This cohort suffered from mild anemia with average hemoglobin levels of 12.4 g/dL (males) and 10.2 g/dL (females). Plasma and peripheral blood mononuclear cells (PBMC) were isolated from peripheral venous blood by Ficoll purification and stored at −80 °C until temperature-controlled transportation from Germany to the New York University. Peripheral venous blood from healthy malaria-naïve donors was obtained on the day of the study.

The scientists performed flow cytometry on a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed with FlowJo (Tree Star, Ashland, OR, USA). Intracellular T-bet staining was performed using the True-Nuclear Transcription Factor Buffer Set (Biolegend, San Diego, CA, USA). Enzyme-linked immunosorbent assays were performed to estimate malarial antibodies. Assessment of the erythrocyte lysis capacity of plasma was performed following previously described methods with small modifications. Supernatants were read in a spectrophotometer at 414 nm to assess erythrocyte lysis. ELISPOTs were performed as previously reported.

The team identified the production of an unusual type of immune B-cell: FcRL5+T-bet+ B-cells, that increases anti-phosphatidylserine (PS) antibody production associated with the development of anemia in the patients. These immune cells also developed and produced anti-PS antibodies in blood drawn from uninfected people that was then exposed to broken remnants of malaria-infected red blood cells in the laboratory.

Ana M. Rodriguez, PhD, a Professor of Microbiology and a senior author of the study, said, "There is a great need for novel targeted treatments for malaria-induced anemia, which is common and can be fatal for many malaria patients. The unique phenotype and specificity of these immune B-cells could allow them to be used as a biomarker for anemia or as a target for new therapies.” The study was published on November 12, 2019 in the journal eLife.

Related Links:
New York University School of Medicine
Becton Dickinson
Tree Star
Biolegend


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.