Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Technique Predicts Cancer Recurrence Risk for Melanoma Patients

By LabMedica International staff writers
Posted on 05 Feb 2020
Many primary melanomas can be cured by having this lesion removed, but melanoma can also recur and spread; an analysis of the removed lesion can offer some information on the likelihood that the cancer will recur.

Despite advances in molecular diagnostics for other forms of cancer, analysis of a skin cancer lesion is surprisingly simplistic. The lesion's thickness, patients with thinner melanomas tend to do better, and microscopic features, such as ulcerations, are considered, and a T stage of 1 through 4 is assigned.

An international team of scientists led by those at Brigham and Women's Hospital (Boston, MA, USA) determined if certain measurable features of T cells could predict recurrence in patients whose primary melanoma had been removed and were free of disease. T1 melanomas (<1mm) rarely metastasize, so they studied T2 (1-2mm), T3 (2-4mm) and T4 (>4mm) primary melanomas. The team’s analysis included more than 300 samples from patients across different sites. The team compared samples from patients whose primary melanoma progressed to metastatic disease to patients whose primary melanoma did not. They used high-throughput DNA sequencing, performed by Adaptive Biotechnologies (Seattle, WA, USA) to analyze the T cell repertoire of the tumors.

The investigators found that of all variables identified, the T-cell fraction (TCFr; or proportion of cells in the lesion that were T cells) was a powerful, independent predictor of which patients would progress. Even for patients whose lesion thickness (T) was the same, TCFr was able to predict which patients were more likely to have metastatic disease. Patients with a TCFr of lower than 20% were more at risk of disease progression than patients with a TCFr of higher than 20%. For example, for patients with T3 melanoma (2-4mm thickness), five years after having their primary lesion removed, 51% of those with lower TCFr experienced recurrence, compared to 24% with higher TCFr.

Thomas S. Kupper, MD, a dermatologist and senior author of the study, said, “This is a simple, elegant test. It's quantitative rather than subjective, and it may be able to add value to predictions about disease progression. In the future, such a test could help us tailor treatment; patients with high TCFr may further benefit from checkpoint inhibitor therapy, while low TCFr patients may need additional intervention.”

Related Links:
Brigham and Women's Hospital
Adaptive Biotechnologies



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Centromere B Assay
Centromere B Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.