We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Diagnostic Assay Developed for Unclassified Severe Combined Immune Deficiency

By LabMedica International staff writers
Posted on 30 Jun 2020
Print article
Image: MACS cell separation kit uses a combination of superparamagnetic nano-sized beads and a very high magnetic gradient in MACS Columns (Photo courtesy of Miltenyi Biotec).
Image: MACS cell separation kit uses a combination of superparamagnetic nano-sized beads and a very high magnetic gradient in MACS Columns (Photo courtesy of Miltenyi Biotec).
Severe combined immune deficiency (SCID) is a group of rare hereditary genetic disorders, and is characterized by a total absence of immune system function, including an absence of T-lymphocytes, the white blood cells that play a crucial role in the body's immune defense.

Without appropriate treatment, this disorder is fatal during the first months of life in the majority of cases. Newborn screening has led to an increased incidence of patients diagnosed with SCID. Although many SCID-causing genes have been identified, clinicians may face a patient without any abnormal gene identified even with advanced sequencing technologies.

A team of scientists from The Centre Hospitalier Universitaire Sainte-Justine (Montreal, QC, Canada) isolated a very small number of stem cells from patients using a limited amount of blood (3mL to 5 mL). A test with a 3-dimensional (3D) culture that mimics the function of a human thymus is used to test this small number of cells, and a response is obtained in less than five weeks. If the results are normal, thymus transplantation is recommended, but if they are abnormal, then a bone marrow transplant is preferred.

For 3D culture, CD34+ cells were purified from mononuclear cells purified by Ficoll from either fresh or frozen and thawed umbilical cord blood (CB) or peripheral blood (PB) using the MACS kit (Miltenyi Biotec, Bergisch Gladbach, Germany). CD34+ cells were mixed with trypsin-harvested OP9-DLL4 cells (1:23 mix) to form a 2.5-µL cell pellet, which was placed on a dry 25-mm polycarbonate culture insert. This insert was transferred in a 6-well dish containing 1.5 mL media. Media was changed every three or four days. Cells were harvested from the insert for fluorescence-activated cell sorter analysis.

The investigators applied the in vitro 3D T-cell differentiation assay to verify whether they could discern intrinsic from extrinsic hematopoietic stem cell (HSC) differentiation defects using limiting quantities of peripheral blood from young SCID patients. As a demonstration of an intrinsic defect of differentiation, they showed that PB-CD34+ HSCs from an IL2RG/γc patient could not differentiate into CD34−CD7+CD1a+ double-negative (DN) cells, CD4+CD8+ double-positive (DP) cells, or CD3+ cells after three weeks of culture, although CD34+CD7+ pro-T cells were abundantly present.

On the other hand, PB-CD34+ HSCs from a SCID patient with complete RAG2 deficiency (null mutation) advanced normally to the CD34−CD7+CD1a+ DN stage, with scarce presence of CD4+CD8+ DP cells (0.72% versus 22.7% for control) and no CD3+ cells after five weeks of culture. An additional RAG1 hypomorph patient presenting with Omenn syndrome could however differentiate efficiently up to the CD4+CD8+ DP stage (39.5% versus 12.36% for control) after five weeks of culture, but did not show evidence of CD3+ cell presence.

The authors concluded that they have presented a proof-of-principle for an assay using cells obtained from a minimal volume of PB to inform the physician about the approximate level of deficiency (hematopoietic stem and progenitor cell versus thymus defect) in unclassified SCID. The study was published on June 17, 2020 in the journal Blood Advances.

Related Links:
The Centre Hospitalier Universitaire Sainte-Justine
Miltenyi Biotec


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.