We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Cells Reprogram Immune Cells to Assist in Metastasis

By LabMedica International staff writers
Posted on 20 Jul 2020
Print article
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Natural killer (NK) cells, a type of immune cell, are known to limit metastasis by inducing the death of cancer cells, but metastases still form in patients, so there must be ways for cancer cells to escape.

The loss of immunosurveillance is critical to breast cancer metastasis, immune checkpoint blockade has not been as effective in treating metastatic breast cancer as in melanoma or lung cancer. Breast cancer cells must overcome NK cell surveillance to form distant metastases, yet currently there is limited understanding of how metastatic cancer cells escape NK cell regulation.

Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their colleagues used ex vivo and in vivo models of metastasis, to establish that keratin-14+ breast cancer cells are vulnerable to NK cells. They then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth.

Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. The team next showed that treatment with antibodies targeting T cell immunoreceptor with Ig and ITIM domains (TIGIT), antibodies targeting killer cell leptin-like receptor G1 (KLRG1), or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential.

Isaac Chan, MD, PhD, a Medical Oncologist and lead author of the study, said, “Metastatic disease is the main driver of breast cancer deaths, and we need a deeper understanding of how and why it occurs. Our study has identified a new strategy for cancer cells to co-opt the immune system. If we could prevent or reverse natural killer cell reprogramming in patients, it could be a new way to stop metastasis and reduce breast cancer mortality.”

The authors proposed that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence. The process may also apply to other cancer types. Immunotherapies that target NK cells could also potentially be used together with existing immunotherapies that stimulate T cells to fight cancer. The study was published on July 9, 2020 in the Journal of Cell Biology.

Related Links:
Johns Hopkins Kimmel Cancer Center

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.