We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inherited Causes of Clonal Hematopoiesis in Multiplicity of Whole Genomes

By LabMedica International staff writers
Posted on 29 Oct 2020
Print article
Image: Mutations in cell free DNA (cfDNA) or cells in the peripheral blood along with anemia or thrombocytopenia are the hallmark of myelodysplastic syndrome (MDS). The diagnosis of MDS is confirmed when mutations in hematopoietic cells are detected at relatively high levels (Photo courtesy of Genomic Testing Cooperative).
Image: Mutations in cell free DNA (cfDNA) or cells in the peripheral blood along with anemia or thrombocytopenia are the hallmark of myelodysplastic syndrome (MDS). The diagnosis of MDS is confirmed when mutations in hematopoietic cells are detected at relatively high levels (Photo courtesy of Genomic Testing Cooperative).
The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating hematopoietic stem cell populations has recently been associated with both hematological cancer and coronary heart disease, and this phenomenon is termed clonal hematopoiesis of indeterminate potential (CHIP).

As the name CHIP suggests, this subpopulation in the blood is characterized by a shared unique mutation in the cells' DNA; it is thought that this subpopulation is "clonally" derived from a single founding cell and is therefore made of genetic "clones" of the founder. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP.

A team of scientists at the Broad Institute (Cambridge, MA, USA) and their colleagues analyzed high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. They noted that the prevalence of CHIP increased with the age at which the blood samples were taken from participants, as well as with a history of smoking.

The investigators identified associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. About three-quarters of individuals with CHIP had mutations in just three genes: DNMT3A, TET2, and ASXL1. Some CHIP characteristics, they noted, varied by driver gene mutation. For instance, JAK2 CHIP mutation carriers were generally younger than other carriers, and TET2 CHIP carriers tended to have increased interleukin-1β (IL-1β levels), while JAK2 and SF3B1 carriers had increased circulating IL-18.

Within a subset of this cohort, the team conducted a single-variant genome-wide association analysis to uncover germline variants linked to CHIP. Through their analysis and subsequent replication, they uncovered one variant in TERT that was associated with a 1.3-fold increased risk of developing CHIP, as well as a variant near both KPNA4 and TRIM59 that was associated with a 1.16-fold increased risk and a variant near TET2 that was associated with a 2.4-fold increased risk of developing CHIP.

The authors concluded that germline genetic variation shapes hematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal hematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues. The study was published on October 14, 2020 in the journal Nature.

Related Links:
Broad Institute

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.