We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




New Control Mechanism Discovered in Innate Immune System

By LabMedica International staff writers
Posted on 11 Feb 2021
Print article
Image: Inter-α-inhibitor heavy chain 4 (ITIH4) inhibits proteases in the innate immune system via novel inhibitory mechanism (Photo courtesy of Rasmus Kjeldsen Jensen, PhD).
Image: Inter-α-inhibitor heavy chain 4 (ITIH4) inhibits proteases in the innate immune system via novel inhibitory mechanism (Photo courtesy of Rasmus Kjeldsen Jensen, PhD).
Proteases are enzymes that cleave other proteins. Most often, proteases occur in cascade networks, where a particular event triggers a chain reaction in which several proteases cleave and thereby activate each other. Most well-known is probably the coagulation cascade, which causes clotting of our blood when a vessel is punctured.

Inter-α-inhibitor heavy chain 4 (ITIH4) is a liver-produced plasma protein belonging to the inter–α-inhibitor/ITIH family of proteins that consists of bikunin and six different heavy chain proteins. This protein family is also referred to as inter–α-trypsin inhibitor proteins since bikunin displays a weak inhibitory effect on proteases for which a biological role is yet to be defined.

Biomedical Scientists at Aarhus University (Aarhus, Denmark) and a colleague investigated which other proteins in the blood the so-called mannan-binding lectin–associated serine protease (MASP) proteases interact with the complement cascade. To characterize in detail how ITIH4 inhibits the MASP proteases, they isolated both free ITIH4 and ITIH4 bound to the MASP-1 protease. By the use of X-ray small-angle scattering and electron microscopy, these samples were studied. Liquid chromatography tandem-mass spectrometry was performed using a Q-Exactive plus mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA).

The scientists showed that ITIH4 is cleaved by several human proteases within a protease-susceptible region, enabling ITIH4 to function as a protease inhibitor. This is exemplified by its inhibition of mannan-binding lectin–associated serine protease-1 (MASP-1), MASP-2, and plasma kallikrein, which are key proteases for intravascular host defense. Mechanistically, ITIH4 acts as bait that, upon cleavage, forms a non-covalent, inhibitory complex with the executing protease that depends on the ITIH4 von Willebrand factor A domain. ITIH4 inhibits the MASPs by sterically preventing larger protein substrates from accessing their active sites, which remain accessible and fully functional toward small substrates.

The authors concluded that the active sites of MASP within the non-covalent ITIH4-MASP complexes are catalytically competent, but downstream cleavage of C2 and C4 are inhibited by physically blocking access of the scissile bonds to the active sites. Such activity was demonstrated in human and murine serum. ITIH4 was found to be cleaved by various proteases within the protease-susceptible region (PSR), suggesting that ITIH4 is a broad-acting inhibitor that targets numerous proteases. The study was published on January 8, 2021 in the journal Science Advances.

Related Links:
Aarhus University
ThermoFisher Scientific


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.