We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Maternal Autoantibody Profiles Are Biomarkers for Autism

By LabMedica International staff writers
Posted on 28 Jun 2022
Print article
Image: The Bio-Rad iMark Microplate Absorbance Reader (Photo courtesy of Electronics Depot USA)
Image: The Bio-Rad iMark Microplate Absorbance Reader (Photo courtesy of Electronics Depot USA)

Autism is a neurodevelopment condition affecting 1 in 44 children in the U.S. It has a wide range of characteristics with different intensities and causes. One type of autism is maternal autoantibody–related autism spectrum disorder (MAR ASD).

MAR ASD is marked by the presence of specific maternal immune proteins known as autoantibodies that react to certain proteins found in the fetal brain. The maternal autoantibodies (IgG) cross the placenta and access the developing brain. Once there, they may cause changes in the way the brain develops in the offspring, leading to behaviors linked to autism.

Clinical Immunologists at the University of California, Davis (Davis, CA, USA) collected maternal blood mid pregnancy (15–20 weeks of gestation) in citrate dextrose. They used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420).

Plasma was separated, labeled, and stored at −80 °C. Prior to use, samples were thawed at room temperature (RT), vortexed, and centrifuged at 13,000 RPM for 10 minutes. Maternal antibody cross-reactivity against the eight antigens was determined by Enzyme-Linked Immunosorbent Assay (ELISA) using custom-made and commercially available proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX). The absorbance was measured at 490-450 nm using an iMark Microplate Absorbance Reader (Bio-Rad Laboratories, Hercules, CA, USA).

The scientists reported that they found reactivity to at least one of the nine MAR ASD patterns in 10% of the autistic group. This is compared with 4% of the intellectual disability group for some patterns, and 1% of the general population group. Four patterns were present only in mothers whose children were later diagnosed with autism, making those particular autoantibody patterns highly predictive.

The study also found that a mother with reactivity to any one of the nine MAR ASD patterns has around eight times the chance of having an autistic child. Several MAR ASD patterns were strongly associated with autism with intellectual disability. Others were linked to autism without intellectual disability. The protein pattern most strongly linked to autism was (CRMP1+CRMP2). It increased the likelihood of an autism diagnosis by 16 times and was not found in the non-autism groups.

Judy Van de Water, PhD, a professor of immunology and neurodevelopment and senior author of the study, said, “Previously, we identified nine patterns linked to MAR ASD. In this study, we wanted to check the accuracy of these patterns in predicting MAR ASD. To do that, we tested plasma from pregnant mothers, collected by the Early Markers for Autism (EMA) study. We hope our work can help develop better-tailored services based on the type of autism and the child's strengths and specific challenges.”

The authors concluded that one of the greatest strengths of their current study was that the samples were collected during mid-pregnancy, demonstrating the predicative value of maternal IgG reactivity against MAR ASD + patterns and child outcomes. The study was published on May 26, 2022 in the journal Molecular Psychiatry.

Related Links:
University of California, Davis 
Bio-Rad Laboratories 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.