Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




AI Leverages Tumor Genetics to Predict Patient Response to Chemotherapy

By LabMedica International staff writers
Posted on 23 Jan 2024

Understanding tumor responses to drugs becomes challenging due to the complex nature of DNA replication, a critical target for many cancer treatments. More...

All cells, including cancer ones, depend on a sophisticated system for DNA replication during cell division. Most chemotherapies aim to disrupt this replication process in rapidly multiplying tumor cells. Given the diverse genetic mutations in tumors, predicting drug resistance remains a formidable challenge. Now, scientists have developed a machine learning algorithm capable of predicting when cancer will resist chemotherapy. This model was specifically tested on cervical cancer, accurately predicting responses to cisplatin, a widely used chemotherapy drug. It efficiently identified tumors likely to resist treatment and shed light on the molecular mechanisms driving this resistance.

Developed by the University of California San Diego School of Medicine (La Jolla, CA, USA), the algorithm assesses how various genetic mutations collectively impact a tumor's response to DNA replication-inhibiting drugs. The research centered around 718 genes typically analyzed in clinical genetic testing for cancer. These genes' mutations formed the basis for the machine learning model, trained using publicly available drug response data. This process led to the identification of 41 molecular complexes — clusters of interacting proteins — where genetic alterations affect drug effectiveness. The model's efficacy was particularly demonstrated in cervical cancer, where approximately 35% of tumors show resistance to treatment.

The algorithm successfully distinguished between tumors that were likely to respond to treatment, correlating with better patient outcomes, and those that were resistant. Importantly, the model also provided insights into its decision-making process by pinpointing the protein complexes driving resistance in cervical cancer. This interpretability feature of the model is crucial not only for its effectiveness but also in establishing reliable AI systems in medical applications.

"Clinicians were previously aware of a few individual mutations that are associated with treatment resistance, but these isolated mutations tended to lack significant predictive value. The reason is that a much larger number of mutations can shape a tumor's treatment response than previously appreciated," said Trey Ideker, PhD, professor in Department of Medicine at UC San Diego of Medicine. "Artificial intelligence bridges that gap in our understanding, enabling us to analyze a complex array of thousands of mutations at once."

"Unraveling an AI model's decision-making process is crucial, sometimes as important as the prediction itself," added Ideker. "Our model's transparency is one of its strengths, first because it builds trust in the model, and second because each of these molecular assemblies we’ve identified becomes a potential new target for chemotherapy. We’re optimistic that our model will have broad applications in not only enhancing current cancer treatment, but also in pioneering new ones."

Related Links:
University of California San Diego


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Blood Glucose Test Strip
AutoSense Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.