We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Predicts Tumor-Killing Cells with High Accuracy

By LabMedica International staff writers
Posted on 16 May 2024
Print article
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body. T cells, a primary type of white blood cell or lymphocyte, circulate in the blood and monitor for virally infected or cancerous cells. Among these, T cells that infiltrate solid tumors are known as tumor-infiltrating lymphocytes, or TILs. However, not all TILs effectively recognize and attack tumor cells. To address this, scientists have now employed artificial intelligence (AI) to create a predictive model that can identify the most effective TILs for use in cancer immunotherapy.

The new AI-driven predictive model, called TRTpred developed by scientists at Ludwig Cancer Research (New York, NY, USA) ranks T cell receptors (TCRs) according to their tumor reactivity. To create TRTpred, the researchers utilized 235 TCRs from patients with metastatic melanoma, already categorized as tumor-reactive or non-reactive. They input the global gene-expression profiles of the T cells harboring each TCR into a machine learning model to identify patterns distinguishing tumor-reactive T cells from their inactive counterparts. This model, enhanced with additional algorithms, supports personalized cancer treatments tailored to the unique cellular composition of each patient’s tumors.

The TRTpred model was used to analyze TILs from 42 patients with melanoma, gastrointestinal, lung, and breast cancer, pinpointing tumor-reactive TCRs with about 90% accuracy. The selection process was further refined using a secondary algorithmic filter to isolate those T cells with “high avidity”—meaning they bind strongly to tumor antigens. It was observed that T cells identified by TRTpred and this secondary filter as both tumor-reactive and high avidity were predominantly located within the tumors rather than in the surrounding stromal tissue. This aligns with previous studies suggesting that effective T cells often deeply penetrate tumor islets.

A third filter was then introduced to enhance the identification of TCRs recognizing a diverse array of tumor antigens. This filter groups TCRs based on similar physical and chemical characteristics, assuming TCRs in each group recognize the same antigen. This enhanced system, named MixTRTpred, was then tested by growing human tumors in mice, extracting TCRs from their TILs, and employing MixTRTpred to identify T cells that were tumor-reactive, had high avidity, and targeted multiple tumor antigens. The researchers then engineered mouse T cells to express these TCRs and demonstrated that these modified cells could effectively eradicate tumors when reintroduced into the mice.

“The implementation of artificial intelligence in cellular therapy is new and may be a game-changer, offering new clinical options to patients,” said Ludwig Lausanne’s Alexandre Harari, who led the study published on May 7, 2024 in Nature Biotechnology.

Related Links:
Ludwig Cancer Research

Gold Member
Turnkey Packaging Solution
HLX
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Leptin ELISA
Leptin AccuBind ELISA Kit
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.