We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

By LabMedica International staff writers
Posted on 15 Nov 2024
Print article
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology patients.

In a new study, scientists at the Institute of Science of Data and Artificial Intelligence (DATAI) at the University of Navarra (Pamplona, Spain) analyzed data from over 3,000 patients diagnosed with lung and bladder cancers. By employing machine learning models, the researchers discovered new genetic signatures unique to each stage of these cancers and created a system known as the "IFIT index" (Index of "Physical Immunity"). This system is aimed at personalizing therapies to enhance their effectiveness. The IFIT index measures a patient's immunological fitness, categorizing them based on their risk at various stages of the disease. This approach allows for predicting how well a patient will respond to treatment depending on the activity of their immune system in different stages of cancer treatment.

The research, published in the Journal for ImmunoTherapy of Cancer, is based on an analysis of the cancer immunity cycle (CIC), which looks at how immune system signals affect the success of immunotherapy. Using this framework and AI tools, the researchers identified specific patterns of cellular activity linked to the molecular stages of the disease and developed the IFIT index. This innovation highlights the potential of AI in advancing personalized medicine and offers new prospects in the fight against cancer. The team also indicated that this technique will continue to be refined through future collaborative studies involving other cancer types.

"Immunotherapy represents one of the most promising frontiers in the fight against cancer, and by using artificial intelligence models, we can further fine-tune treatments based on each patient's immune profile," said Rubén Armañanzas, leader of DATAI's laboratory Digital Medicine and one of the lead authors of the study.

 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Mycobacterium Tuberculosis Test
Allplex MTB/MDRe Detection
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II

Print article

Channels

Molecular Diagnostics

view channel
Image: Umbilical cord blood biomarkers may improve preterm infant care (Photo courtesy of Shutterstock)

Umbilical Cord Blood Test Could Identify Preterm Infants at Risk for Medical Complications

Advancements in medical technology and neonatology have significantly improved the care of prematurely born infants. However, these infants still face heightened risks for medical complications, such as... Read more

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.